Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Kühlung im Aufwind

29.05.2012
Forscher vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden schlagen magnetische Formgedächtnislegierungen aus Nickel, Mangan, Indium und Kobalt als Material für magnetische Kühlschränke vor.
Ausschlaggebend für die Eignung dieses Materials sind nicht nur die magnetischen Eigenschaften, sondern die großen Temperaturänderungen, die durch den strukturellen Umbau des Kristallgitters entstehen. Diese in der Fachzeitschrift Nature Materials veröffentlichten Ergebnisse eröffnen ganz neue Möglichkeiten für die magnetische Kühlung.

Weltweit wird ein großer Teil der produzierten Elektroenergie für Kühlzwecke verbraucht. Die effizienteste dafür etablierte Technik, die Kompressionskühlung, hat einen Wirkungsgrad von maximal 45%. Einen wesentlich besseren Wirkungsgrad weisen Kühlgeräte auf, die auf dem magnetokalorischen Effekt beruhen. Dieser funktioniert so: Wird ein konventionelles magnetokalorisches Material in ein Magnetfeld gebracht, richten sich seine zunächst ungeordneten magnetischen Momente parallel zum angelegten Feld aus.

Mikroskopische Aufnahme der Zwillingsstruktur in der Nickel-Mangan-Legierung mit Indium und Kobalt.
Foto: IFW Dresden

Dadurch erhöht sich der magnetische Ordnungszustand. Die Zunahme der magnetischen Ordnung wird bei geeigneter Prozessführung dadurch kompensiert, dass sich die Schwingungen der Atome auf ihren Gitterplätzen verstärken, was zu einer Temperaturerhöhung führt.

Kühlt man das erwärmte Material im Magnetfeld wieder auf die Ausgangstemperatur ab und schaltet dann das Magnetfeld aus, findet der umgekehrte Prozess statt und das Material kühlt sich weiter ab und erreicht eine nun einige Grad Celsius tiefere Temperatur als zu Beginn des Zyklus. In diesem Zustand kann das Material Wärme aufnehmen und somit als Kühlmittel dienen.

Deutlich größere magnetokalorische Effekte lassen sich erzielen, wenn die Änderung der magnetischen Ordnung von einem strukturellen Phasenübergang begleitet wird. Die Dresdner Forscher untersuchten eine Nickel-Mangan-Legierung näher, bei der ein umgekehrter magnetokalorischer Effekt auftritt. Das bedeutet, dass die magnetische Ausrichtung eine moderate Temperaturerhöhung zur Folge hat, während die strukturelle Umwandlung zu einer starken Abkühlung des Materials führt. Die Summe dieser entgegengesetzt wirkenden Effekte ergibt eine Kühlung des Materials bereits beim Anlegen des Magnetfeldes.

Eine Möglichkeit, zu effektiveren magnetischen Kühlsystemen zu gelangen, sehen sie darin, diesen strukturellen Beitrag zum magnetokalorischen Effekt durch die optimale Wahl der chemischen Zusammensetzung zu maximieren. Hierdurch wird eine Temperaturänderung von bis zu 6 Grad bei moderaten Magnetfeldern von 2 Tesla erreicht, wobei die strukturellen Änderungen im Kristallgitter am meisten dazu beitragen. Aus theoretischen und modellhaften Betrachtungen leiten sie ab, dass folgende Bedingungen für hohe Temperaturänderungen in magnetokalorischen Materialien günstig sind: eine vollständige Phasenumwandlung in einem engen Temperaturintervall und eine optimale Feldabhängigkeit der Übergangstemperatur.

Außerdem rückten die Forscher einem weiteren Problem in der magnetokalorischen Anwendung der Nickel-Mangan-Legierungen auf den Leib: Die erforderlichen hohen Temperaturänderungen in diesen Legierungen werden bisher nur im ersten Zyklus erreicht und nehmen in den folgenden Zyklen drastisch ab. Sie fanden heraus, dass das Anlegen eines äußeren Drucks, das zyklische Verhalten deutlich verbessert, und dass die genaue Einstellung der kristallografischen Gitterparameter und das Stapeln von Schichten bestimmter magnetokalorischer Legierungen den Arbeitsbereich, das heißt das Kühlfenster, signifikant erweitern.

Diese in der Fachzeitschrift Nature Materials erschienenen Ergebnisse bringen die Anwendung der magnetischen Kühlung als energieeffiziente und umweltfreundliche Technologie einen wesentlichen Schritt voran.

Pressekontakt

Weitere Informationen:
Prof. Dr. Oliver Gutfleisch
Materialwissenschaft
Technische Universität Darmstadt
Petersenstraße 23
84287 Darmstadt
Tel. 06151 16-75559
gutfleisch@fm.tu-darmstadt.de

Presse- und Öffentlichkeitsarbeit:
Dr. Carola Langer
IFW Dresden
Referentin des Wiss. Direktors
Tel. 0 351 4659-234
c.langer@ifw-dresden.de

Originalveröffentlichung:
“Giant magnetocaloric effect driven by structural transitions”
Jian Liu, Tino Gottschall, Konstantin P. Skokov, James D. Moore, Oliver Gutfleisch
Nature Materials, Advance Online Publication (AOP), 27.05.2012
DOI: 10.1038/NMAT3334

Dr. Carola Langer | idw
Weitere Informationen:
http://www.ifw-dresden.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise