Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Kühlung im Aufwind

29.05.2012
Forscher vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden schlagen magnetische Formgedächtnislegierungen aus Nickel, Mangan, Indium und Kobalt als Material für magnetische Kühlschränke vor.
Ausschlaggebend für die Eignung dieses Materials sind nicht nur die magnetischen Eigenschaften, sondern die großen Temperaturänderungen, die durch den strukturellen Umbau des Kristallgitters entstehen. Diese in der Fachzeitschrift Nature Materials veröffentlichten Ergebnisse eröffnen ganz neue Möglichkeiten für die magnetische Kühlung.

Weltweit wird ein großer Teil der produzierten Elektroenergie für Kühlzwecke verbraucht. Die effizienteste dafür etablierte Technik, die Kompressionskühlung, hat einen Wirkungsgrad von maximal 45%. Einen wesentlich besseren Wirkungsgrad weisen Kühlgeräte auf, die auf dem magnetokalorischen Effekt beruhen. Dieser funktioniert so: Wird ein konventionelles magnetokalorisches Material in ein Magnetfeld gebracht, richten sich seine zunächst ungeordneten magnetischen Momente parallel zum angelegten Feld aus.

Mikroskopische Aufnahme der Zwillingsstruktur in der Nickel-Mangan-Legierung mit Indium und Kobalt.
Foto: IFW Dresden

Dadurch erhöht sich der magnetische Ordnungszustand. Die Zunahme der magnetischen Ordnung wird bei geeigneter Prozessführung dadurch kompensiert, dass sich die Schwingungen der Atome auf ihren Gitterplätzen verstärken, was zu einer Temperaturerhöhung führt.

Kühlt man das erwärmte Material im Magnetfeld wieder auf die Ausgangstemperatur ab und schaltet dann das Magnetfeld aus, findet der umgekehrte Prozess statt und das Material kühlt sich weiter ab und erreicht eine nun einige Grad Celsius tiefere Temperatur als zu Beginn des Zyklus. In diesem Zustand kann das Material Wärme aufnehmen und somit als Kühlmittel dienen.

Deutlich größere magnetokalorische Effekte lassen sich erzielen, wenn die Änderung der magnetischen Ordnung von einem strukturellen Phasenübergang begleitet wird. Die Dresdner Forscher untersuchten eine Nickel-Mangan-Legierung näher, bei der ein umgekehrter magnetokalorischer Effekt auftritt. Das bedeutet, dass die magnetische Ausrichtung eine moderate Temperaturerhöhung zur Folge hat, während die strukturelle Umwandlung zu einer starken Abkühlung des Materials führt. Die Summe dieser entgegengesetzt wirkenden Effekte ergibt eine Kühlung des Materials bereits beim Anlegen des Magnetfeldes.

Eine Möglichkeit, zu effektiveren magnetischen Kühlsystemen zu gelangen, sehen sie darin, diesen strukturellen Beitrag zum magnetokalorischen Effekt durch die optimale Wahl der chemischen Zusammensetzung zu maximieren. Hierdurch wird eine Temperaturänderung von bis zu 6 Grad bei moderaten Magnetfeldern von 2 Tesla erreicht, wobei die strukturellen Änderungen im Kristallgitter am meisten dazu beitragen. Aus theoretischen und modellhaften Betrachtungen leiten sie ab, dass folgende Bedingungen für hohe Temperaturänderungen in magnetokalorischen Materialien günstig sind: eine vollständige Phasenumwandlung in einem engen Temperaturintervall und eine optimale Feldabhängigkeit der Übergangstemperatur.

Außerdem rückten die Forscher einem weiteren Problem in der magnetokalorischen Anwendung der Nickel-Mangan-Legierungen auf den Leib: Die erforderlichen hohen Temperaturänderungen in diesen Legierungen werden bisher nur im ersten Zyklus erreicht und nehmen in den folgenden Zyklen drastisch ab. Sie fanden heraus, dass das Anlegen eines äußeren Drucks, das zyklische Verhalten deutlich verbessert, und dass die genaue Einstellung der kristallografischen Gitterparameter und das Stapeln von Schichten bestimmter magnetokalorischer Legierungen den Arbeitsbereich, das heißt das Kühlfenster, signifikant erweitern.

Diese in der Fachzeitschrift Nature Materials erschienenen Ergebnisse bringen die Anwendung der magnetischen Kühlung als energieeffiziente und umweltfreundliche Technologie einen wesentlichen Schritt voran.

Pressekontakt

Weitere Informationen:
Prof. Dr. Oliver Gutfleisch
Materialwissenschaft
Technische Universität Darmstadt
Petersenstraße 23
84287 Darmstadt
Tel. 06151 16-75559
gutfleisch@fm.tu-darmstadt.de

Presse- und Öffentlichkeitsarbeit:
Dr. Carola Langer
IFW Dresden
Referentin des Wiss. Direktors
Tel. 0 351 4659-234
c.langer@ifw-dresden.de

Originalveröffentlichung:
“Giant magnetocaloric effect driven by structural transitions”
Jian Liu, Tino Gottschall, Konstantin P. Skokov, James D. Moore, Oliver Gutfleisch
Nature Materials, Advance Online Publication (AOP), 27.05.2012
DOI: 10.1038/NMAT3334

Dr. Carola Langer | idw
Weitere Informationen:
http://www.ifw-dresden.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie