Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

LOEWE-Schwerpunkt Präventive Biomechanik entwickelt virtuelle Menschmodelle zur Produktoptimierung

06.08.2013
Weniger Verletzungen, mehr Komfort

Im Rahmen des LOEWE-Schwerpunkts (Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) Präventive Biomechanik (PräBionik) werden am Institut für Materialwissenschaften der Fachhochschule Frankfurt am Main die mechanischen Wechselwirkungen zwischen bestimmten Regionen des menschlichen Körpers und technischen Stützkonstruktionen wie Autositzen, Gefäßprothesen oder Sportschuhen untersucht.


Die Wissenschaftler(innen) des LOEWE-Schwerpunkts Präventive Biomechanik erzeugen ein Finite-Elemente-Modell des kompletten Körpers oder einzelner Körperregionen im unbelasteten und/oder belasteten Zustand, hier am Beispiel eines Autositzes.

Quelle: FH Frankfurt/LOEWE-Schwerpunkt Präventive Biomechanik


Der LOEWE-Schwerpunkt Präventive Biomechanik untersucht die mechanischen Wechselwirkungen zwischen bestimmten Regionen des menschlichen Körpers und technischen Stützkonstruktionen wie Sportschuhen.

Quelle: FH Frankfurt/LOEWE-Schwerpunkt Präventive Biomechanik

Ziel ist es, Verletzungsrisiken durch biomechanisch optimierte Produkte – vom Joggingschuh bis zum Auto- und Flugzeugsitz – zu minimieren und den Sitz- und Trage-Komfort zu erhöhen.

„Wo drückt es, wenn man mit dem Auto eine längere Strecke auf einem schlechten Sitz fährt? Was passiert mit dem Fuß oder der Achillessehne, wenn man mit ‚falschen‘ Joggingschuhen läuft? Die Zahl an Patientinnen und Patienten nimmt aufgrund gesundheitsschädlicher Lebensweise und des demografischen Wandels zu. Dies hat einen erhöhten Einsatz von medizinischen Hilfsmitteln und Prothesen zur Folge“, erklärt Prof. Dr. Gerhard Silber, Geschäftsführender Direktor des Instituts für Materialwissenschaften und wissenschaftlicher Leiter des LOEWE-Schwerpunktes. „Allerdings können diese Hilfsmittel den Patientenzustand unter Umständen sogar verschlechtern, wenn sie in den betroffenen Weichgeweberegionen des Körpers kritische Spannungen und Verformungen erzeugen.“

Daher arbeiten die Wissenschaftler(innen) mit virtuellen Menschmodellen, die es möglich machen, unterschiedliche Effekte während der Interaktion mit technischen Stützkonstruktionen zu simulieren und zu messen. In Zusammenarbeit mit dem Automobilhersteller Daimler werden unter Einsatz dieser Methode Lösungen gesucht, Autositze noch weiter zu optimieren.

Die virtuellen Menschmodelle (BOSS-Modelle - Body Optimization & Simulation System) ermöglichen es, diese und andere Anwendungsfälle am Rechner zu simulieren. In einem ersten Schritt erfassen die Forscher(innen) dazu dreidimensional die aus Weich- und Hartgeweben bestehenden anatomischen Strukturen des menschlichen Körpers. Dies erfolgt unter Einsatz der Magnet-Resonanz-Tomografie am Institut für Diagnostische und Interventionelle Radiologie des Universitätsklinikums Frankfurt bei Prof. Dr. med. Thomas Vogl.

Mit Hilfe eines 3D-Laser-Scanners wird das gewünschte Finite-Elemente-Modell des kompletten Körpers oder einzelner Körperregionen im unbelasteten und/oder belasteten Zustand erzeugt (siehe Bilder). Der Einsatz der Menschmodelle ist erst durch die Ausstattung mit so genannten in-vivo-Materialeigenschaften, also am lebenden Menschen erzeugten Materialeigenschaften wie Haut/Fettgewebe-Muskelverbünde, im Rahmen von Interaktionen mit Stützkonstruktionen wie Autositzen oder Gelenkimplantaten möglich. So lassen sich Spannungen, Verzerrungen und Verformungen feststellen, die infolge der mechanischen Belastungen durch die Stützkonstruktionen in den Kontaktzonen sowie in den humanen Weichgeweberegionen auftreten.

Die Wissenschaftler(innen) erstellen derzeit auch Menschmodelle, die die Einwirkungen von Sportschuhen beim Gehen und Rennen simulieren. In Kooperation mit einem Sportschuhhersteller sollen so Schuhsohlen und Einlagen optimiert werden, um insbesondere die Achillessehne zu entlasten. Weiterhin konnten auf Basis menschlicher Kopfmodelle die mechanischen Eigenschaften der Wangenhaut erforscht und zur Produktoptimierung von Gebrauchsgegenständen des Hygienesegments genutzt werden.

Unter der Konsortialführung der FH Frankfurt arbeiten im LOEWE-Schwerpunkt Präventive Biomechanik (PräBionik) rund 38 Wissenschaftler(innen) der FH Frankfurt am Main, Goethe-Universität Frankfurt am Main, Philipps-Universität Marburg, sowie die assoziierten Partnerhochschulen Bergische Universität Wuppertal, Johannes Gutenberg-Universität Mainz und Katholisches Klinikum Mainz zusammen. Im Mittelpunkt der Forschungsaktivitäten stehen interdisziplinäre Fragestellungen aus Ingenieurwissenschaften, Biologie und Medizin zu den mechanischen Interaktionen zwischen humanen Weich- und Hartgeweberegionen und technischen Stützkonstruktionen, wie Liege- und Sitzsysteme, Schuhe, künstliche Gelenke oder Implantate in Knochen- und Knorpelstrukturen. Die Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) ist ein Forschungsförderungsprogramm, mit dem das Land Hessen seit 2008 die Hochschulen und Forschungseinrichtungen in Hessen unterstützt.

Kontakt: FH Frankfurt, Fachbereich 2: Informatik und Ingenieurwissenschaften, Institut für Materialwissenschaften, Prof. Dr. Gerhard Silber, Telefon: 069/1533-3035, E-Mail: silber@fb2.fh-frankfurt.de

Nicola Veith | idw
Weitere Informationen:
http://www.praeventive-biomechanik.eu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit