Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Lift ins All

18.06.2013
Materialwissenschaftler der Universität Jena stellen neuen Polymer-Keramik-Verbundwerkstoff vor

Der Weltraum mit seinen unendlichen Weiten beflügelt nicht nur regelmäßig die Fantasie von Schöpfern von Science-Fiction-Literatur, Hollywood-Filmen oder TV-Serien. Auch für die Wissenschaft ist das All eine Herausforderung.


Im Polymerträger ausgerichtete Kohlenstoff-Nanoröhren mit dem Transmissionselektronenmikroskop abgebildet.

Und obwohl die Erforschung oder gar Besiedelung fremder Welten durch Raumfahrer wohl noch in ferner Zukunft liegt, wird der erdnahe Weltraum bereits heute intensiv genutzt: durch Raumstationen oder künstliche Satelliten, die Wetter und Klima erkunden oder zu Telekommunikationszwecken die Erde umrunden.

Die Materialien für Raumstationen oder Satelliten werden heute mit Raketen in die Erdumlaufbahn befördert. „Doch das ist nicht nur teuer, sondern verbraucht auch wertvolle Rohstoffe“, sagt Prof. Dr. Klaus D. Jandt von der Friedrich-Schiller-Universität Jena. Denn: die Raketen können nur einmal für den Transport genutzt werden. „Daher wird derzeit intensiv nach Alternativen für den Weg in den Orbit gesucht“, so der Inhaber des Lehrstuhls für Materialwissenschaft weiter.
Große Hoffnungen setzen Jandt und seine Kollegen in das Konzept eines Weltraumlifts, bei dem eine Gondel von der Erdoberfläche bis zu einer geostationären Raumstation fährt und Satelliten direkt an Ort und Stelle aussetzt. Den Jenaer Materialwissenschaftlern ist nun ein wichtiger Schritt bei der Entwicklung der Grundlagen dafür gelungen: Wie der Physiker Matthias Arras, Prof. Jandt und ihre Kollegen von der Uni Jena in der aktuellen Ausgabe des renommierten amerikanischen Journals „Carbon“ berichten, haben sie einen neuen Polymer-Keramik-Verbundstoff entwickelt, der Potenzial für einen späteren Einsatz in einem Weltraumlift hat (DOI: 10.1016/j.carbon.2013.04.049).

Basis des neuartigen Materials sind Kohlenstoff-Nanoröhrchen (engl. carbon nano tubes, kurz CNT). „Diese zigarrenförmigen Röhren aus reinem Kohlenstoff sind bis zu 30-mal zugfester als Stahl und dabei wesentlich leichter“, erläutert Jandt. Dies mache sie gerade für eine Anwendung als „Aufzugsseil“ in den Orbit interessant, das nicht nur extrem zugfest, sondern auch sehr leicht sein müsste. „Mit keinem anderen bisher bekannten Material wäre ein solches Seil zu realisieren“, weiß Jandt.

Doch die CNTs können ihre Eigenschaft nur dann entfalten, wenn sie alle in eine Richtung orientiert sind, „etwa so wie Zigarren in einer Zigarrenkiste,“ sagt Prof. Jandt und fährt fort: „Es bereitet immer noch Probleme, die Ausrichtung der CNTs, die einen Durchmesser von nur wenigen milliardstel Meter haben, zu erreichen“.

Und genau da ist den Jenaer Forschern nun ein Durchbruch gelungen. Sie brachten die CNTs zunächst in eine Polymerschmelze ein, die anschließend stark verstreckt (gezogen) wurde. „Durch das Ziehen an der Kunststoff-Schmelze entsteht ein hochorientierter Polymerträger“, sagt Matthias Arras, der Doktorand in Prof. Jandts Team ist. Dadurch ist der Polymerträger an sich schon sehr zugfest. Beim Erstarren der Polymerschmelze bildet sich ein amorpher Polymeranteil und es findet eine Grenzflächenkristallisation statt. Kristalle wachsen während des Ziehens geordnet auf den Kohlenstoff-Nanoröhrchen auf und verbinden sich mit diesen. „Die Polymerketten des amorphen Teils des Polymers verhaken sich während des Ziehens an den Kristallen auf den Kohlenstoff-Nanoröhren und ziehen diese so während der Verstreckung alle in eine Richtung“, erklärt Arras. „So entsteht eine extrem hohe Ausrichtung der Röhrchen, die so in Polymeren noch nicht beobachtet wurde.“

Da Kohlenstoff-Nanoröhrchen ähnliche physikalische Eigenschaften wie Keramiken haben, werde sie zu dieser Werkstoffgruppe gezählt. „Wir erwarten fantastische neue Eigenschaften des neuen Polymer-Keramik-Verbundwerkstoffes“, freut sich Professor Jandt, warnt aber vor zu großer Euphorie: „Bis zum Einsatz des Weltraumlifts werden sicher noch einige Jahre vergehen.“

Original-Publikation:
Arras MML et al. Alignment of multi-wall carbon nanotubes by disentanglement in ultra-thin melt-drawn polymer films. Carbon (2013), http://dx.doi.org/10.1016/j.carbon.2013.04.049

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730
E-Mail: k.jandt[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie