Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leichte Werkstoffe, schwere Aufgaben

20.02.2014
Faserverbundwerkstoffe haben attraktive Eigenschaften, sind aber schwer zu bearbeiten. An der TU Wien gelang es, spezielle Bearbeitungsmethoden für Faserverbundmaterialien zu entwickeln.

Warum sollte man Metall verwenden, wenn man auch Faser-Kunststoff-Verbunde einsetzen kann?


Unbrauchbares Ergebnis mit herkömmlichen Methoden
TU Wien


Sauberes Ergebnis mit den Methoden aus dem FIBRECUT-Projekt
TU Wien

Faserverbundwerkstoffe sind leicht und belastbar, mit ihnen lassen sich sparsamere Autos oder leistungsfähigere Industriemaschinen bauen. Allerdings sind sie mit herkömmlichen Methoden schwierig zu bearbeiten. Das saubere Zuschneiden, das Bohren von Schraubenlöchern, der letzte Schliff ist bei Faserverbundwerkstoffen heikel und aufwändig.

An der TU Wien versucht man dieses Problem zu lösen: Durch neue Bearbeitungsmethoden soll die Fertigung von Produkten aus Faserverbundwerkstoffen ähnlich billig und einfach werden wie die Fertigung von Metallteilen.

Der Trick liegt im Kohlenstoff

Das Forschungsteam von Richard Zemann (Institut für Fertigungstechnik und Hochleistungslasertechnik, TU Wien) verwendet Kohlenstofffasern, die nur einige Mikrometer dick sind. Damit sie ihre Form behalten, bettet man sie in Harz ein. So entsteht eine leichte, aber extrem steife Struktur. „Durch die festen Bindungen zwischen den Kohlenstoffatomen erzielt man in Faserrichtung extrem gute mechanische Eigenschaften“, erklärt Richard Zemann. Die Werkstücke wiegen nur ein Viertel dessen, was ein Stahlwerkstück desselben Volumens auf die Waage bringt, und trotzdem können die Kohlenstoff-Werkstoffe Stahl in ihrer Steifigkeit sogar übertreffen.

Besonders interessant sind diese Werkstoffe etwa für die Auto- oder die Flugzeugindustrie: Jedes eingesparte Kilogramm bedeutet eine Reduktion des Treibstoffverbrauchs und des CO2-Ausstoßes. „In der Industrie blickt man schon seit Jahren mit großem Interesse auf Faserwerkstoffe“, sagt Richard Zemann – trotzdem haben sich die Fasern in der Fertigung von Massenprodukten noch nicht durchgesetzt, und dafür gibt es einen entscheidenden Grund: Die feine Endbearbeitung der Werkstoffe ist sehr schwierig.

Platten formen ist einfach, Löcher bohren ist schwer

In der Metallindustrie gibt es gut erprobte, weitverbreitete Verfahren der Endfertigung: Zerspanen, Bohren oder Fräsen ist bei Metallteilen kein Problem. Versucht man allerdings, mit denselben Methoden Faserverbundplatten zu bearbeiten, schädigt man das Material. Es entstehen unbrauchbare Bohrlöcher und Schnittlinien, die dann aufwändig per Hand nachbearbeitet werden müssen – und das ist für Massenproduktion natürlich viel zu teuer.

„Man denkt zwar auf der ganzen Welt darüber nach, wie man aus Karbonfasern am besten Werkstücke formt – doch mit der Endbearbeitung beschäftigen sich nur wenige Forschungsgruppen“, sagt Zemann. Er gründete daher die Initiative Fibrecut – ein Projekt, das neue Methoden für die automatisierte Endbearbeitung von Faserverbundwerkstoffen hervorbringt. Ein theoretisches Modell wird entwickelt, das die physikalischen Vorgänge beim Zerspanen beschreibt.

Damit lässt sich dann abschätzen, wie man in einer bestimmten Situation das beste Ergebnis erzielt werden kann. Wenn man Parameter wie die Drehzahl und die Vorschubgeschwindigkeit eines Bohrers richtig anpasst, kann man plötzlich bessere Ergebnisse erhalten. Getestet werden auch Assistenzsysteme wie ein Schwingtisch, der das Werkstück während eines Schneide- oder Bohrprozesses in Bewegung versetzt. An weiteren Verbesserungen wird gearbeitet: Ganz neue Bearbeitungswerkzeuge mit Beschichtungen werden entwickelt, die speziell auf Faserverbundwerkstoffe ausgelegt sind.

Die Ergebnisse sind eindeutig: Mit den richtigen Zerspanungsmethoden lassen sich die Faserverbundwerkstoffe tatsächlich bearbeiten. „Es ist nicht unmöglich, man braucht einfach viel Know-How, das es in der Industrie heute einfach noch nicht in ausreichendem Maß gibt“, erklärt Richard Zemann. Daher ist in der Industrie auch der Bedarf nach akademischen Kooperationspartnern sehr hoch.

Vom Auto bis zur Fertigungsanlage

Freilich werden die Faserverbundwerkstoffe in nächster Zeit sicher noch teurer sein als herkömmliche Ware. „Man wird nicht unbedingt Stoßstangen oder Kotflügel aus Kohlenstofffasern bauen, weil diese Teile oft ersetzt werden müssen“, meint Richard Zemann. Doch viele andere Teile des Autos, die etwas geschützter im Inneren des Fahrzeuges liegen, werden wohl bald aus Faserwerkstoffen hergestellt werden. Für die Flugzeug- und Raumfahrtindustrie ist das Material besonders attraktiv, dort spielt die Einsparung von Gewicht eine noch größere Rolle. Doch nicht nur für Fahrzeuge sind Faserverbundwerkstoffe sinnvoll: Von der Papierwalze, die aufgrund des leichtere Materials größer dimensioniert werden kann, bis zum Hydraulikzylinder aus Karbonfasern gibt es unzählige Anwendungsmöglichkeiten.

„Dass sich Faserwerkstoffe durchsetzen werden, steht für mich heute außer Frage“, ist Richard Zemann überzeugt. „Einen Technologievorsprung werden jene Unternehmen haben, die als erste die richtigen Bearbeitungsmethoden einsetzen – und dafür brauchen sie Forschungskompetenz.“

Rückfragehinweis:
Dipl.-Ing. Richard Zemann
Institut für Fertigungstechnik und Hochleistungslasertechnik
Technische Universität Wien
Adolf Blamauerg. 1-3, 1030 Wien
T: +43-1-58801-31165
richard.zemann@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen
23.04.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics