Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserstrahl als Platzanweiser für Moleküle

27.08.2012
Mit Laserstrahlen können Moleküle in einem dreidimensionalen Material punktgenau an der richtigen Stelle fixiert werden. Die an der TU Wien entwickelte Methode kann für das Züchten von Gewebe oder für Mikrosensoren verwendet werden.

Es gibt heute viele Methoden, dreidimensionale Objekte auf der Größenskala von Mikrometern herzustellen. Doch was kann man tun, wenn man auch die chemischen Eigenschaften eines Materials mikrometergenau bestimmen möchte?


3D-Muster, erzeugt durch Photografting (180 µm Breite). Grün fluoriszierende Moleküle werden in einem Hydrogel fixiert. TU Wien

An der TU Wien wurde nun eine Methode entwickelt, mit einem Laserstrahl bestimmte Moleküle punktgenau an gewünschten Stellen andocken zu lassen. Beim Züchten von biologischem Gewebe könnte man so durch präzise chemische Signale vorgeben, an welchen Stellen sich einzelne Zellen anlagern sollen. Auch für die Sensorik eröffnen sich spannende Chancen:

Ein winziges, dreidimensionales „Labor im Chip“ wäre möglich, in dem exakt angeordnete Moleküle auf die Stoffe der Umgebung reagieren.

Materialwissenschaft und Chemie

„3D-Photografting“ heißt die neue Methode. Zwei Arbeitsgruppen der TU Wien arbeiteten bei diesem Projekt eng zusammen: Das Materialwissenschafts-Team von Prof. Jürgen Stampfl und die Gruppe um Prof. Robert Liska aus dem Bereich makromolekulare Chemie.

Die beiden Forschungsgruppen machten schon in der Vergangenheit mit neuartigen 3D-Druckern auf sich aufmerksam. Für die Anwendungen, um die es diesmal geht, wären 3D-Druckverfahren allerdings nicht zielführend gewesen: „Ein Material aus winzigen Bausteinen mit unterschiedlichen chemischen Eigenschaften zusammenzusetzen ist extrem aufwendig“, erklärt Aleksandr Ovsianikov vom Institut für Werkstoffwissenschaften der TU Wien. „Man geht daher von einem bestehenden dreidimensionalen Gerüst aus und bringt punktgenau an den gewünschten Stellen bestimmte Moleküle an.“
Moleküle im Hydrogel – fixiert vom Laserstrahl

Die Ausgangsbasis bildet ein sogenanntes Hydrogel – ein Material aus Makromolekülen, die in einem sehr lockeren Netzwerk angeordnet sind. Zwischen ihnen bleiben große Lücken, durch die sich andere Moleküle, oder auch ganze Zellen, hindurchbewegen können.

Maßgeschneiderte Moleküle werden in dieses Hydrogel-Netz eingebracht, dann werden bestimmte Stellen mit einem Laser bestrahlt. Dort, wo der fokussierte Laser besonders intensiv ist, wird eine photochemisch labile Bindung der Moleküle gebrochen. Dadurch werden reaktive Intermediate gebildet, die sich lokal sehr rasch in das Netzwerk des Hydrogels einbauen. Die erreichbare Genauigkeit hängt vom verwendeten Laser-Linsensystem ab. An der TU Wien konnte eine Auflösung von 4 µm erreicht werden. „Ähnlich wie ein Maler nach Belieben Farbe auf verschiedenen Stellen der Leinwand aufträgt, werden Moleküle am Hydrogel fixiert – allerdings in drei Dimensionen und mit höchster Präzision“ erklärt Robert Liska.

Moleküle als chemisches Signal für Zellen

Einsetzbar ist die neue Methode zum Beispiel für die künstliche Erzeugung von biologischem Gewebe. Ähnlich wie eine Kletterpflanze, die entlang eines Gerüsts nach oben wächst, brauchen auch Zellen eine Vorgabe, an der sie sich anlagern. In natürlichem Gewebe wird das durch die „extrazelluläre Matrix“ gewährleistet – einer Struktur, die den Zellen durch bestimmte Aminosäure-Sequenzen signalisiert, wo sie andocken müssen.

Man versucht daher, im Labor ähnliche chemische Signale zu setzen. Experimente mit der Anlagerung von Zellen auf zweidimensionalen Flächen gab es bereits, doch zur Herstellung größerer Gewebe, die eine innere Struktur haben (etwa Blutkapillaren), ist ein echtes 3D-Verfahren unverzichtbar.
Mini-Sensoren spüren Moleküle auf

Je nach Anwendungsgebiet kann man für diese Technik ganz unterschiedliche Moleküle verwenden – so kann das „3D-Photografting“ nicht nur für Bio-Engineering nützlich sein, sondern etwa auch für die Herstellung von Solarzellen dienen. Auch in der Sensorik verspricht man sich viel von dieser Technologie: Punktgenau kann man damit Moleküle anordnen, die bestimmte chemische Substanzen binden und sie damit nachweisbar machen. Ein mikroskopisches „Labor im Chip“ wird damit möglich.
Rückfragehinweise:
Dr. Aleksandr Ovsianikov
Institut für Werkstoffwissenschaft und Werkstofftechnologie
Technische Universität Wien
Favoritenstr. 9-11, 1040 Wien
T: +43-1-58801-30830
aleksandr.ovsianikov@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201290098/abstract
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/platzanweiser/
http://www.youtube.com/watch?v=04udOnqdyXQ&feature=youtu.be

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie