Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserstrahl als Platzanweiser für Moleküle

27.08.2012
Mit Laserstrahlen können Moleküle in einem dreidimensionalen Material punktgenau an der richtigen Stelle fixiert werden. Die an der TU Wien entwickelte Methode kann für das Züchten von Gewebe oder für Mikrosensoren verwendet werden.

Es gibt heute viele Methoden, dreidimensionale Objekte auf der Größenskala von Mikrometern herzustellen. Doch was kann man tun, wenn man auch die chemischen Eigenschaften eines Materials mikrometergenau bestimmen möchte?


3D-Muster, erzeugt durch Photografting (180 µm Breite). Grün fluoriszierende Moleküle werden in einem Hydrogel fixiert. TU Wien

An der TU Wien wurde nun eine Methode entwickelt, mit einem Laserstrahl bestimmte Moleküle punktgenau an gewünschten Stellen andocken zu lassen. Beim Züchten von biologischem Gewebe könnte man so durch präzise chemische Signale vorgeben, an welchen Stellen sich einzelne Zellen anlagern sollen. Auch für die Sensorik eröffnen sich spannende Chancen:

Ein winziges, dreidimensionales „Labor im Chip“ wäre möglich, in dem exakt angeordnete Moleküle auf die Stoffe der Umgebung reagieren.

Materialwissenschaft und Chemie

„3D-Photografting“ heißt die neue Methode. Zwei Arbeitsgruppen der TU Wien arbeiteten bei diesem Projekt eng zusammen: Das Materialwissenschafts-Team von Prof. Jürgen Stampfl und die Gruppe um Prof. Robert Liska aus dem Bereich makromolekulare Chemie.

Die beiden Forschungsgruppen machten schon in der Vergangenheit mit neuartigen 3D-Druckern auf sich aufmerksam. Für die Anwendungen, um die es diesmal geht, wären 3D-Druckverfahren allerdings nicht zielführend gewesen: „Ein Material aus winzigen Bausteinen mit unterschiedlichen chemischen Eigenschaften zusammenzusetzen ist extrem aufwendig“, erklärt Aleksandr Ovsianikov vom Institut für Werkstoffwissenschaften der TU Wien. „Man geht daher von einem bestehenden dreidimensionalen Gerüst aus und bringt punktgenau an den gewünschten Stellen bestimmte Moleküle an.“
Moleküle im Hydrogel – fixiert vom Laserstrahl

Die Ausgangsbasis bildet ein sogenanntes Hydrogel – ein Material aus Makromolekülen, die in einem sehr lockeren Netzwerk angeordnet sind. Zwischen ihnen bleiben große Lücken, durch die sich andere Moleküle, oder auch ganze Zellen, hindurchbewegen können.

Maßgeschneiderte Moleküle werden in dieses Hydrogel-Netz eingebracht, dann werden bestimmte Stellen mit einem Laser bestrahlt. Dort, wo der fokussierte Laser besonders intensiv ist, wird eine photochemisch labile Bindung der Moleküle gebrochen. Dadurch werden reaktive Intermediate gebildet, die sich lokal sehr rasch in das Netzwerk des Hydrogels einbauen. Die erreichbare Genauigkeit hängt vom verwendeten Laser-Linsensystem ab. An der TU Wien konnte eine Auflösung von 4 µm erreicht werden. „Ähnlich wie ein Maler nach Belieben Farbe auf verschiedenen Stellen der Leinwand aufträgt, werden Moleküle am Hydrogel fixiert – allerdings in drei Dimensionen und mit höchster Präzision“ erklärt Robert Liska.

Moleküle als chemisches Signal für Zellen

Einsetzbar ist die neue Methode zum Beispiel für die künstliche Erzeugung von biologischem Gewebe. Ähnlich wie eine Kletterpflanze, die entlang eines Gerüsts nach oben wächst, brauchen auch Zellen eine Vorgabe, an der sie sich anlagern. In natürlichem Gewebe wird das durch die „extrazelluläre Matrix“ gewährleistet – einer Struktur, die den Zellen durch bestimmte Aminosäure-Sequenzen signalisiert, wo sie andocken müssen.

Man versucht daher, im Labor ähnliche chemische Signale zu setzen. Experimente mit der Anlagerung von Zellen auf zweidimensionalen Flächen gab es bereits, doch zur Herstellung größerer Gewebe, die eine innere Struktur haben (etwa Blutkapillaren), ist ein echtes 3D-Verfahren unverzichtbar.
Mini-Sensoren spüren Moleküle auf

Je nach Anwendungsgebiet kann man für diese Technik ganz unterschiedliche Moleküle verwenden – so kann das „3D-Photografting“ nicht nur für Bio-Engineering nützlich sein, sondern etwa auch für die Herstellung von Solarzellen dienen. Auch in der Sensorik verspricht man sich viel von dieser Technologie: Punktgenau kann man damit Moleküle anordnen, die bestimmte chemische Substanzen binden und sie damit nachweisbar machen. Ein mikroskopisches „Labor im Chip“ wird damit möglich.
Rückfragehinweise:
Dr. Aleksandr Ovsianikov
Institut für Werkstoffwissenschaft und Werkstofftechnologie
Technische Universität Wien
Favoritenstr. 9-11, 1040 Wien
T: +43-1-58801-30830
aleksandr.ovsianikov@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201290098/abstract
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/platzanweiser/
http://www.youtube.com/watch?v=04udOnqdyXQ&feature=youtu.be

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops