Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserstrahl-Glaslöten für schonendes und langzeitstabiles Packaging elektronischer Bauteile

10.03.2010
Höhere Integrationsdichte und Werkstoffkombinationen mit spezifischer Funktionalität kennzeichnen elektronische und elektrotechnische Produkte.

Insbesondere das hermetische Packaging stellt die Fertigungstechnik vor besondere Herausforderungen, denen mit konventionellen Ansätzen wie Kleben und Löten nicht mehr begegnet werden kann. Das Fraunhofer-Institut für Lasertechnik ILT hat hierfür ein innovatives Packaging-Verfahren für Mikrobauteile und Elektronikkomponenten auf der Basis des Laserstrahl-Glaslötens für den Einsatz in der Massenproduktion entwickelt. Durch die Verwendung bleifreier Lote erfüllt es die strengen RoHS-EG-Umweltrichtlinien.

Präzisionsprodukte wie Halbleiter, Sensoren oder optische und medizintechnische Systemkomponenten enthalten hochempfindliche Elektronikelemente. Diese dürfen häufig nicht mit Wasser, Sauerstoff und anderen Elementen in Berührung kommen und müssen deshalb hermetisch verschlossen werden. Das gasdichte Packaging des komplizierten Innenlebens stellt eine große Herausforderung für den Fügeprozess der Mikrobauteile dar.

Ein gängiges Verfahren für das hermetische Verschließen von Bauteilen aus Silizium und Glas sind Hochtemperaturverfahren wie das anodische Bonden oder das Glasfrit-Bonden. Die zum Fügen notwendige Wärmeenergie wird dabei durch einen Ofenprozess bei Temperaturen von 300 bis 600°C in das Bauteil eingebracht. Da die temperaturempfindlichste Bauteilkomponente die Maximaltemperatur des Gesamtsystems bestimmt, scheiden diese beiden Verfahren für temperaturlabile funktionale Elemente aus. Beispielsweise sind sie für die Kapselung von OLEDs ungeeignet, da die funktionalen organischen Schichten bereits bei einer Temperatur von 100 °C zerstört würden.

Bislang werden temperaturlabile Komponenten in der Regel geklebt. Allerdings haben Langzeittests bei Halbleitern und OLEDs erwiesen, dass die Haltbarkeit der Klebeverbindung begrenzt ist. Nach und nach gelangen Sauerstoff und Feuchtigkeit in das Innere des Bauteils und beeinträchtigen so seine Funktion. Insbesondere für Bauteile im medizintechnischen Bereich sind die begrenzte Haltbarkeit und die Temperaturempfindlichkeit der Klebeverbindungen problematisch, da sie zum Beispiel Sterilisierungsprozessen im Autoklaven nicht standhalten. Elektronikbauteile wie Sensoren in Implantaten können häufig nur in Verbindung mit einem operativen Eingriff am Patienten ausgewechselt werden. Die Hersteller dieser und anderer Präzisionsbauteile suchen daher nach einer Lösung, die Haltbarkeit ihrer Produkte zu verlängern. Da Hochtemperatur- und Klebeverfahren den Anforderungen an das Fügen von Mikroelektronikbauteilen mit unterschiedlichen Materialien nicht genügen, fordern Hersteller nun ein zuverlässiges Niedrigtemperaturverfahren.

Eine geeignete Lösung bietet hier das laserstrahlgestützte Löten mit Glaslotwerkstoffen. Es handelt sich dabei um ein relativ junges Fügeverfahren, das sich durch eine minimale thermische Belastung des Gesamtbauteils auszeichnet. Forscher des Fraunhofer ILT entwickeln dieses Verfahren derzeit mit dem Ziel, es bald für die Serienfertigung einsetzen zu können. Bei dieser Fügetechnik wird zunächst das Lot aus einer Glaspartikelpaste mit Hilfe einer Printmaske präzise auf den Deckel des Bauteils aufgetragen. Im Ofen wird dieses Lot, je nach Art der verwendeten Glaspaste, bei einer Temperatur von 350 - 500 °C vorverglast, so dass die Bindemittel der Paste verdampfen. Nach der Abkühlphase des Lots wird das Elektronikbauteil mit dem Deckel zusammengeführt. Mit einer scannenden Beaufschlagung der Lotnaht mittels Laserstrahl erfolgt eine definierte und lokal begrenzte Temperaturerhöhung. Das restliche Bauteil bleibt von diesem Wärmeintrag unberührt. Aufgrund seiner hohen Scangeschwindigkeit von bis zu 10.000 mm pro Sekunde wird der Fügeprozess "quasisimultan" gesteuert. Die gesamte Lotkontur wird gleichmäßig erwärmt, der Deckel kann in das flüssige Lotbad einsinken und wird so mit dem Bauteil hermetisch verbunden. Im Vergleich zum Klebeverfahren bietet das lasergestützte Verfahren eine erhebliche Erhöhung der Haltbarkeit des gesamten Mikrobauteils, die Permeabilität von Flüssigkeiten und Gasen liegt praktisch bei Null. Die Lotnaht ist zudem völlig blasen- und rissfrei. Gerade für den medizinischen Bereich bedeutet dies eine signifikante Erhöhung der Sicherheit. "Ein weiterer Vorteil des laserstrahlbasierten Glaslötens liegt darin, dass die Lotnaht mit 300-500 µm sehr schmal ist, während Klebnähte eine Breite von mehreren Millimetern aufweisen", erklärt Heidrun Kind, Projektleiterin am Fraunhofer ILT. "Diese Tatsache gewinnt im Zuge der fortschreitenden Miniaturisierung von Präzisionsbauteilen an Bedeutung. Breite Klebenähte auf OLEDs zum Beispiel werden als optische Störelemente wahrgenommen. Bei Sensoren in Implantaten können sie die ganze Bauteilgeometrie nachteilig verändern. Auch im Hinblick auf den Umweltaspekt ist das Verfahren zukunftsfähig: Seit Neuestem sind wir in der Lage, völlig bleifrei zu löten. So genügt unser Verfahren der EG-Richtlinie RoHS zur Minimierung von Gefahrstoffen in Elektrobauteilen."

Aufgrund der maximalen Flexibilität in Bezug auf die Bauteilgröße und -form eignet sich das Verfahren sehr gut für die industrielle Serienfertigung. Das Verschließen von Komponenten der Mikrotechnik ist ebenso möglich wie das Fügen von Großbauteilen mit Abmessungen von 200 x 200 mm2. Neben Glas/Glasbauteilen können auch mit MAM- oder ITO-Schichten versehene Substrate sowie Glas/Silizium-Komponenten hermetisch dicht miteinander verbunden werden.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Dipl.-Ing. Heidrun Kind
Kompetenzfeld Abtragen und Fügen
Telefon +49 241 8906-490
heidrun.kind@ilt.fraunhofer.de
Dr.-Ing. Arnold Gillner
Leiter Kompetenzfeld Abtragen und Fügen
Telefon +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops