Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserlicht aus polymeren Mikrokelchen

23.08.2010
In einem interdisziplinären Projekt ist es Wissenschaftlern des KIT gelungen, eine neue Erscheinungsform von optischen Resonatoren zu schaffen: Mikrokelche. Diese Polymerstrukturen sind durch ihre Form und ihre glatte Oberfläche besonders effiziente Quellen für Laserlicht. Zudem haben sie das Potenzial kleinste Bio-Moleküle, Viren oder Gefahrstoffe nachzuweisen.

Optische Mikroresonatoren ermöglichen den Einschluss und die Speicherung von Licht in einem Raum, dessen Größe geringer ist als der Durchmesser eines Haares. Mit ihrer Hilfe lassen sich grundlegende physikalische Effekte auf den Gebieten der Optik und der Quantenphysik untersuchen.

Der Lichteinschluss in Mikroresonatoren basiert auf dem einfachen Prinzip der Totalreflexion. Licht wird an der Oberfläche des Resonators zurückgeworfen und so im Inneren des Resonators eingeschlossen. Dabei verlaufen die Lichtstrahlen entlang des Randes der Resonatoren und werden dort lange Zeit gespeichert, was zu einer hohen optischen Güte führt – man spricht von hier von optischen Flüstergalerien. Das Prinzip ist vergleichbar mit den Schallwellen, die entlang des Umfanges der Kuppel der St. Paul’s Cathedral in London laufen.

Gemeinsam ist es nun am KIT der Arbeitsgruppe von Professor Heinz Kalt, Institut für Angewandte Physik (APH) am Center for Functional Nanostructures (CFN) und der unabhängigen Nachwuchsgruppe um Dr. Ing. Timo Mappes, Institut für Mikrostrukturtechnik (IMT), gelungen, neuartige kelchförmige Mikroresonatoren herzustellen. Erreicht wurde dies mit Hilfe eines speziell entwickelten thermischen Aufschmelzverfahrens. Die Mikrokelche bestehen aus Polymer und haben Durchmesser von 40 Mikrometern (ca. 1/3 eines Haardurchmessers). Diese besitzen eine extrem glatte Oberfläche und sind dadurch enorm leistungsfähig.

Prinzipiell sind zwei Anwendungen möglich. Die Mikrokelche können als neuartige Laser-Lichtquellen oder aber als extrem empfindliche Detektoren zum markerfreien Nachweis von Biomolekülen oder Gefahrstoffen verwendet werden. Markerfreie Nachweise sind besonders vorteilhaft, da sie ohne aufwendige chemische oder biologische Probenaufbereitung auskommen (d.h. es werden keine zusätzlichen Markierungen wie fluoreszierende Proteine oder Nanopartikel angeheftet) und dadurch günstiger und schneller als viele etablierte Verfahren sind.

Ziel der Wissenschaftler ist es nun, Lichtquelle und Detektor zusammen hochkompakt auf einem Chip zu integrieren, um für künftige Anwendungen ein sogenanntes Lab-on-Chip-System zu bilden.

Die hohe Resonatorqualität hat noch einen weiteren entscheidenden Vorteil: „Wir können den Laser mit geringer Energiezufuhr betreiben, was die Verwendung von Mikrokelch-Lasern in Bauteilen sehr attraktiv macht“, erklärt der Physiker Tobias Großmann, Mitarbeiter beider Arbeitsgruppen am KIT und Stipendiat der Karlsruhe School of Optics and Photonics (KSOP). Für die Lichtverstärkung bauen die Wissenschaftler organische Farbstoffe in die Polymer-Kelche ein. Durch die Anpassung der Farbstoffkonzentration lässt sich die Emissionswellenlänge der Laser ändern und somit deren Farbe gezielt anpassen.

Das Potenzial der entwickelten Mikrokelch-Resonatoren für künftige Anwendungen in der Industrie ist enorm. Neben dem hochempfindlichen und markerfreien Nachweis von Molekülen ist der Einsatz der Resonatoren als Filter in der optischen Datenübertragung oder als Quelle zur Erzeugung von nicht-klassischem Licht denkbar – eine Grundlage für künftige Quantencomputer.

Die Forscher am KIT haben die Mikrokelche mit massenproduktionstauglichen Verfahren der Halbleiterindustrie hergestellt. Somit ist der Transfer der Technologie in die Serienfertigung bereits mittelfristig möglich.

Bibliographie

[1] Tobias Grossmann, Mario Hauser, Torsten Beck, Cristian Gohn-Kreuz, Matthias Karl, Heinz Kalt, Christoph Vannahme und Timo Mappes, High-Q conical polymeric microcavities, Appl. Phys. Lett. 96, 013303 (2010)

[2] Tobias Grossmann, Simone Schleede, Mario Hauser, Mads Brøkner Christiansen, Christoph Vannahme, Carsten Eschenbaum, Sönke Klinkhammer, Torsten Beck, Jochen Fuchs, G. Ulrich Nienhaus, Uli Lemmer, Anders Kristensen, Timo Mappes und Heinz Kalt. Low-threshold conical microcavity dye lasers, Appl. Phys. Lett. 97, 063304 (2010)

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Monika Landgraf
Pressestelle
Tel.: +49 721 608-8126
Fax: +49 721 608-3658
E-Mail: monika.landgraf@kit.edu

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie