Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kunstmuskel als Schwingungsdämpfer

01.06.2012
Ingenieure arbeiten an intelligenten Materialien, die Vibrationen mindern und Energie aus der Umwelt gewinnen sollen. Diese elektroaktiven Elastomere könnten beispielsweise störende Schwingungen im Auto mindern oder an unzugänglichen Stellen ange- brachte Sensoren drahtlos mit Strom versorgen.

Die Straße ist mit Kopfstein gepflastert, das Radeln macht nicht wirklich Spaß. Wenigstens hat das Fahrrad einen Sattel, der mit Silikon gefüllt ist. Der dämpft das Gerüttel und gleicht einen Teil der lästigen Vibrationen aus.


Das Bild zeigt im Vordergrund die gitterförmige Elektrode und im Hintergrund das Elastomer. © Ursula Raapke

In den Augen eines Fachmanns ist der Stoff im Sattel ein »Elastomer« – ein Material, das nachgiebig und verformbar ist wie ein Gummiband. Ingenieure des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF in Darmstadt arbeiten nun an einer neuen Generation: Sie entwickeln Bauteile aus Elastomeren, die aktiv auf unerwünschte Schwingungen reagieren und sie dadurch noch wirkungsvoller dämpfen als bislang.

Elastomere kommen in der Technik seit Jahrzehnten zum Einsatz, etwa als Schwingungsdämpfer im Maschinenbau oder in Lagerungen für Automotoren. Bislang wirken sie bei Schwingungen und Stößen rein passiv. Effektiver wäre es, die Elastomere würden aktiv auf Vibrationen reagieren und gegensteuern. Ähnlich wie der Tennisspieler bei einem Stoppball seinen Schläger zurückzieht, um den Ball zu verlangsamen, würde ein aktives Elastomer der Vibration gezielt Energie entziehen – indem es exakt im Gegentakt schwingt. Theoretisch ließe sich damit eine Vibration vollständig eliminieren.

Elastomere vibrieren bei Wechselspannung

Materialien, die dazu taugen, gibt es bereits. »Sie heißen elektroaktive Elastomere«, erläutert LBF-Wissenschaftler William Kaal. »Das sind elastische Stoffe, die ihre Form ändern, wenn man sie einem elektrischen Feld aussetzt.« Der Clou: Legt man eine Wechselspannung an, beginnt das Material zu vibrieren. Steuert zudem eine intelligente Elektronik das Elastomer so an, dass es genau im Gegentakt vibriert, kann es die unerwünschten Schwingungen einer Maschine oder eines Motors weitgehend auslöschen. Um zu zeigen, dass das Prinzip funktioniert, haben die Darmstädter Forscher einen Demonstrator entwickelt. Er ist kleiner als eine Zigarettenschachtel und setzt sich aus 40 dünnen Elastomer-Elektroden-Schichten zusammen. Die Experten sprechen von einem Stapelaktor. »Die Herausforderung war das Design der Elektroden, mit denen wir das elektrische Feld an die Elastomer-Schichten anlegen«, erläutert Kaals Kollege Jan Hansmann. Für gewöhnlich bestehen Elektroden aus Metall. Metalle jedoch sind relativ starr, behindern also die Verformung des Elastomers. Die Experten lösten das Problem elegant: »Wir haben die Elektroden mit mikroskopisch kleinen Löchern versehen«, sagt Hansmann.

»Wird das Elastomer durch eine elektrische Spannung verformt, kann es in diese Löcher ausweichen.« Das Resultat ist ein Aktor, der sich auf Befehl um einige Zehntelmillimeter heben und senken kann – und zwar viele Male pro Sekunde. Um dessen Fähigkeiten zu demonstrieren, stellt William Kaal einen kleinen mechanischen Schwinger auf das Gerät. Wenn er dieses einschaltet, schlägt der Schwinger kräftig aus – der Aktor hat genau seine Resonanzfrequenz getroffen. Umgekehrt kann die Vorrichtung Schwingungen aktiv dämpfen: Wird der Schwinger von Hand angestoßen, kommt er schnell zur Ruhe, wenn der Aktor im Gegentakt vibriert.

Eine mögliche Anwendung für ihren Stapelaktor sehen die LBF-Ingenieure im Fahrzeugbau. »Die Vibrationen des Motors können störend sein«, sagt William Kaal. »Sie werden über die Karosserie in den Innenraum geleitet, wo die Insassen sie zu spüren bekommen.« Zwar sind Motoren sorgfältig gelagert, aber: »Aktive Elastomere könnten einen Beitrag zur weiteren Reduktion von Schwingungen im Auto leisten«, meint Kaal.

Wenn Vibrationen zu Strom werden

Die Funktion des Stapelaktors lässt sich aber auch umkehren: Statt Vibrationen zu erzeugen, kann das Gerät Schwingungen aus der Umgebung aufnehmen, um Energie zu erzeugen. Dass das Prinzip funktioniert, haben die Forscher bewiesen: Als sie einen elektromagnetischen Schwinger auf ihren Stapelaktor stellten, wandelte dieser die Vibrationen in Strom um. »Interessant ist das zum Beispiel für eine Überwachung an unzugänglichen Stellen, wo es Vibrationen gibt, aber keinen Stromanschluss«, meint Jan Hansmann – und nennt als Beispiel Temperatur- und Schwingungssensoren, die Brücken auf ihren Zustand hin überwachen.

Die Stapelaktor-Technologie ist weitgehend ausgereift: »Der Fertigungsprozess ließe sich gut automatisieren. Das ist wichtig für eine industrielle Massenproduktion«, meint Kaal. Allerdings muss sich noch in Dauertests zeigen, wie langzeitbeständig die intelligenten Aktoren sind. Schließlich sollen sie harschen Umgebungen trotzen, wie sie etwa im Motorraum eines Autos zu finden sind.

William Kaal | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/juni/kunstmuskel-als-schwingungsdaempfer.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit