Kristallwachstum im Vakuum – Perfekte Kristalle aus schwebenden Tropfen

Kristallwachstum im Vakuum University of Twente

Die Forscher wollen die Kristalle „schwebend“ wachsen lassen. Das geschmolzene Metall, aus dem die hochreinen Kristalle gewonnen werden, schwebt dank eines elektromagnetischen Feldes in einem Vakuum. Durch dieses elektromagnetische Schweben erfährt das Material keinen Druck von den Wänden her.

Defekte am Kristall werden so auf ein Minimum reduziert. Das erwarten die Forscher der University of Twente und der Universität Leiden, die jetzt für das Projekt „Perfektionierung von Metallkristallen“ von der Technologiestiftung STW ausgezeichnet werden.

Kristalle mit hervorragenden Eigenschaften werden beispielsweise in der Halbleiterindustrie verwendet oder in Teilchenbeschleunigern eingesetzt. Das Unternehmen „Surface Preparation Laboratory“ (SPL) von Raoul van Gastel von der University of Twente ist Weltmarktführer auf dem Gebiet der Kristalloberflächen von höchster Qualität. Die Forscher arbeiten mit diesem Unternehmen eng zusammen.

Keine Verunreinigung

Die übliche Technik für das Kristallwachstum sieht so aus: Das Material wird in einem Schmelztiegel erhitzt, bis es flüssig ist. Anschließend wird eine etwas kältere Stange mit einem Kristallkeim in die Flüssigkeit eingetaucht und ebenda expandiert das Metall in fester Form, in Kristallen.

Durch die Wände des Schmelztiegels erfährt das Material allerdings Stress und das Material des Tiegels hinterlässt Spuren. Dabei kann eine Kontamination mit Kohlenstoff auftreten, erläutert Forscher Arie van Houselt von der Gruppe Physik der Grenzflächen und Nanomaterialien der University of Twente (MESA und Institut für Nanotechnologie).

Elektromagnetische Variante

Die Hinwendung zu „schwebendem Wachstum“ ist vielversprechend, aber nicht selbstverständlich. Die Kunst besteht darin, die Flüssigkeit schwebend zu halten. In der Flüssigkeit wächst dann der Keim des neuen Kristalls. Es wird als Ganzes aus dem
Vakuumsystem extrahiert.

Schwebende Tropfen durch elektrostatische Levitation – die Ultraviolettquelle stellt sicher, dass das Metall ionisiert wird. Durch die elektrische Ladung kann es unter dem Einfluss eines elektrischen Feldes schweben. Der Laser lässt das Metall schmilzen und durch den Positionssensor wird der schwebende Tropfen an seinem Platz gehalten. Für die angestrebten Kristallgrößen bei dem neuen Projekt genügt die elektrostatische Levitation wahrscheinlich nicht. Daher fällt die Wahl auf die elektromagnetische Variante.

Charakterisierung

Kein Kontakt mit einer Wand, unter Ultrahochvakuum und sehr rein: Ergeben sich hierdurch tatsächlich Kristalle mit hervorragenden Eigenschaften? Die Twente-Gruppe wird die neuen Kristalle mit einer ganzen Reihe von Techniken wie Low Energy-Elektronenmikroskopie (LEEM) und Rasterkraftmikroskopie (AFM) charakterisieren. Die Kollegen in Leiden fokussieren sich dagegen eher auf die chemischen Eigenschaften.

Für das Projekt „Perfektionierung von Metallkristallen“ hat die Technologiestiftung STW eine halbe Million Euro aus dem „Open Technologie-Programma“ für einen Zeitraum von vier Jahren zuerkannt. Zwei Doktoranden können nun in sehr enger Zusammenarbeit mit dem Unternehmen SPL starten.

Adresse:
University of Twente
Drienerlolaan 5
7522 NB Enschede

Media Contact

Alf Buddenberg idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.utwente.nl/en/research/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer