Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Kristalle unter Hochdruck ihre Strukturen ändern: Neue Erkenntnisse zum Dolomit im Erdinneren

06.09.2012
Viele hundert Kilometer tief in der Erde können die gleichen Mineralien andere kristalline Strukturen als auf der Erdoberfläche haben.
Dank ihrer Wandlungsfähigkeit bewahren sie ihre thermodynamische Stabilität trotz der hohen Drücke, denen sie im äußeren und inneren Erdmantel ausgesetzt sind. Ein Beispiel ist das Dolomit, ein weltweit häufig vorkommendes Karbonatmineral. Eine internationale Forschungsgruppe mit Prof. Dr. Leonid Dubrovinsky (Universität Bayreuth) berichtet in den PNAS – den Proceedings of the National Academy of Sciences der USA – über Experimente, die zeigen, in welchen kristallinen Strukturen Dolomit im Erdinneren 'überlebt'.

Dolomit ist im Sedimentgestein zahlreicher deutscher Mittelgebirge und in den Alpen enthalten. Ebenso wie die italienischen Dolomiten mit ihren stark dolomithaltigen Sedimenten verdankt es seinen Namen dem französischen Geologen Déodat de Dolomie. Dolomit existiert ausschließlich in Form von Kristallen, die sich aus Calcium, Magnesium und Karbonatgruppen zusammensetzen. Diese chemischen Bestandteile bilden unter den Druckverhältnissen auf der Erdoberfläche und in der Erdkruste eine kristalline Struktur trigonaler Symmetrie.

Bisher ging die Forschung von der Annahme aus, Dolomit könne hohen Drücken, wie sie im Erdmantel herrschen, nicht standhalten und würde in die Karbonatmineralien Calcit (Aragonit) und Magnesit zerfallen. Doch Experimente, die am Bayerischen Geoinstitut (BGI) – einem Forschungszentrum der Universität Bayreuth – und an der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble durchgeführt wurden, haben diese Annahme jetzt widerlegt. Am BGI wurden Einkristalle des in der Natur vorkommenden, mit Eisen angereicherten Dolomits immer stärkeren Drücken ausgesetzt. Mithilfe einer speziellen Technik, der Röntgenmikrodiffraktion, konnten die Forscher nachweisen, dass Dolomit bei einem Druck über 17 Gigapascal nicht zerfällt, sondern seine kristalline Struktur ändert. Dadurch entsteht ein neues Polymorph, Dolomit-II genannt. Dieses Material besteht aus den gleichen Atomen wie das natürliche Dolomit. Seine Struktur hat jedoch eine deutlich niedrigere (trikline) Symmetrie.

Wird der Druck auf Dolomit-II solange erhöht, bis 35 Gigapascal überschritten sind, ändert sich die kristalline Struktur erneut. Jetzt entsteht ein weiteres Polymorph, das als Dolomit-III bezeichnet wird. Es folgt zwar gleichfalls dem triklinen Kristallsystem, doch sind auffällige Änderungen zu beobachten. Denn in den kristallinen Strukturen von Dolomit und Dolomit-II haben die Carbongruppen – bestehend aus einem Kohlenstoff- und drei Sauerstoffatomen – eine flächige Form. Doch in Dolomit-III deformieren sich die Carbongruppen und nähern sich bei steigendem Druck zunehmend einer pyramidenartigen Form an. Auf diese Weise bestätigen die Forschungsergebnisse frühere Computerberechnungen, wonach Carbongruppen in kristallinen Strukturen oberhalb von 80 Gigapascal die Form eines Tetraeders aufweisen. Anders als vorhergesagt, kommt diese Form allerdings nicht durch eine abrupte Phasenänderung zustande, sondern bildet sich in einem kontinuierlichen Prozess heraus.

"Die Forschungsergebnisse bestärken uns in der Erwartung, dass tief im Erdinneren Materialstrukturen existieren, die auf der Erdoberfläche völlig unbekannt sind", erklärt Prof. Dr. Leonid Dubrovinsky, der sich am Bayerischen Geoinstitut mit Hochdruck- und Hochtemperatur-Kristallographie befasst. "Hier liegt ein faszinierendes Forschungsgebiet vor uns, das noch manche Überraschungen bereit hält."

Gemeinsam mit den anderen Mitgliedern der Forschungsgruppe hält Dubrovinsky die neuen Einblicke in die kristallinen Strukturen des Dolomits für geeignet, das Verständnis des Kohlenstoffkreislaufs im Erdinneren weiter voranzubringen. Denn weil die Druckverhältnisse im Erdinneren sehr gut erforscht sind, lassen sich die im Experiment erzeugten und analysierten Polymorphe des Dolomits verschiedenen Tiefen im Erdinneren zuordnen. Dolomit-II existiert demnach in einer Tiefe zwischen 500 und 850 km, Dolomit-III in einer Tiefe bis zu 1.700 km. Möglicherweise haben das Dolomit und seine Polymorphe dabei eine wichtige Funktion als Transporteure von Kohlenstoff. Wenn beispielsweise bei tektonischen Prozessen zwei Platten der Erdkruste aneinander stoßen und sich die eine Platte unter die andere schiebt, wandert das im Sedimentgestein enthaltene Dolomit immer weiter in die Tiefe. Auf dem Weg in den äußeren und den inneren Erdmantel verändert es sich zunächst zu Dolomit-II, dann zu Dolomit-III. Sobald diese Polymorphe, etwa durch Mantelkonvektion, aufwärts in die Erdkruste vordringen oder sogar die Erdoberfläche erreichen, nehmen sie wieder die 'normale' kristalline Struktur des Dolomits an.

Veröffentlichung:

Marco Merlini, Wilson A. Crichton, Michael Hanfland, Mauro Gemmi, Harald Müller, Ilya Kupenko, and Leonid Dubrovinsky,
Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle,
in: PNAS 2012 109 (34) 13509-13514;
published ahead of print August 6, 2012.
DOI: 10.1073/pnas.1201336109
Ansprechpartner:

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Tel.:+49 (0)921 55 3736/3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Hält die Klebung?
29.05.2017 | Technische Hochschule Mittelhessen

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy