Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Kristalle unter Hochdruck ihre Strukturen ändern: Neue Erkenntnisse zum Dolomit im Erdinneren

06.09.2012
Viele hundert Kilometer tief in der Erde können die gleichen Mineralien andere kristalline Strukturen als auf der Erdoberfläche haben.
Dank ihrer Wandlungsfähigkeit bewahren sie ihre thermodynamische Stabilität trotz der hohen Drücke, denen sie im äußeren und inneren Erdmantel ausgesetzt sind. Ein Beispiel ist das Dolomit, ein weltweit häufig vorkommendes Karbonatmineral. Eine internationale Forschungsgruppe mit Prof. Dr. Leonid Dubrovinsky (Universität Bayreuth) berichtet in den PNAS – den Proceedings of the National Academy of Sciences der USA – über Experimente, die zeigen, in welchen kristallinen Strukturen Dolomit im Erdinneren 'überlebt'.

Dolomit ist im Sedimentgestein zahlreicher deutscher Mittelgebirge und in den Alpen enthalten. Ebenso wie die italienischen Dolomiten mit ihren stark dolomithaltigen Sedimenten verdankt es seinen Namen dem französischen Geologen Déodat de Dolomie. Dolomit existiert ausschließlich in Form von Kristallen, die sich aus Calcium, Magnesium und Karbonatgruppen zusammensetzen. Diese chemischen Bestandteile bilden unter den Druckverhältnissen auf der Erdoberfläche und in der Erdkruste eine kristalline Struktur trigonaler Symmetrie.

Bisher ging die Forschung von der Annahme aus, Dolomit könne hohen Drücken, wie sie im Erdmantel herrschen, nicht standhalten und würde in die Karbonatmineralien Calcit (Aragonit) und Magnesit zerfallen. Doch Experimente, die am Bayerischen Geoinstitut (BGI) – einem Forschungszentrum der Universität Bayreuth – und an der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble durchgeführt wurden, haben diese Annahme jetzt widerlegt. Am BGI wurden Einkristalle des in der Natur vorkommenden, mit Eisen angereicherten Dolomits immer stärkeren Drücken ausgesetzt. Mithilfe einer speziellen Technik, der Röntgenmikrodiffraktion, konnten die Forscher nachweisen, dass Dolomit bei einem Druck über 17 Gigapascal nicht zerfällt, sondern seine kristalline Struktur ändert. Dadurch entsteht ein neues Polymorph, Dolomit-II genannt. Dieses Material besteht aus den gleichen Atomen wie das natürliche Dolomit. Seine Struktur hat jedoch eine deutlich niedrigere (trikline) Symmetrie.

Wird der Druck auf Dolomit-II solange erhöht, bis 35 Gigapascal überschritten sind, ändert sich die kristalline Struktur erneut. Jetzt entsteht ein weiteres Polymorph, das als Dolomit-III bezeichnet wird. Es folgt zwar gleichfalls dem triklinen Kristallsystem, doch sind auffällige Änderungen zu beobachten. Denn in den kristallinen Strukturen von Dolomit und Dolomit-II haben die Carbongruppen – bestehend aus einem Kohlenstoff- und drei Sauerstoffatomen – eine flächige Form. Doch in Dolomit-III deformieren sich die Carbongruppen und nähern sich bei steigendem Druck zunehmend einer pyramidenartigen Form an. Auf diese Weise bestätigen die Forschungsergebnisse frühere Computerberechnungen, wonach Carbongruppen in kristallinen Strukturen oberhalb von 80 Gigapascal die Form eines Tetraeders aufweisen. Anders als vorhergesagt, kommt diese Form allerdings nicht durch eine abrupte Phasenänderung zustande, sondern bildet sich in einem kontinuierlichen Prozess heraus.

"Die Forschungsergebnisse bestärken uns in der Erwartung, dass tief im Erdinneren Materialstrukturen existieren, die auf der Erdoberfläche völlig unbekannt sind", erklärt Prof. Dr. Leonid Dubrovinsky, der sich am Bayerischen Geoinstitut mit Hochdruck- und Hochtemperatur-Kristallographie befasst. "Hier liegt ein faszinierendes Forschungsgebiet vor uns, das noch manche Überraschungen bereit hält."

Gemeinsam mit den anderen Mitgliedern der Forschungsgruppe hält Dubrovinsky die neuen Einblicke in die kristallinen Strukturen des Dolomits für geeignet, das Verständnis des Kohlenstoffkreislaufs im Erdinneren weiter voranzubringen. Denn weil die Druckverhältnisse im Erdinneren sehr gut erforscht sind, lassen sich die im Experiment erzeugten und analysierten Polymorphe des Dolomits verschiedenen Tiefen im Erdinneren zuordnen. Dolomit-II existiert demnach in einer Tiefe zwischen 500 und 850 km, Dolomit-III in einer Tiefe bis zu 1.700 km. Möglicherweise haben das Dolomit und seine Polymorphe dabei eine wichtige Funktion als Transporteure von Kohlenstoff. Wenn beispielsweise bei tektonischen Prozessen zwei Platten der Erdkruste aneinander stoßen und sich die eine Platte unter die andere schiebt, wandert das im Sedimentgestein enthaltene Dolomit immer weiter in die Tiefe. Auf dem Weg in den äußeren und den inneren Erdmantel verändert es sich zunächst zu Dolomit-II, dann zu Dolomit-III. Sobald diese Polymorphe, etwa durch Mantelkonvektion, aufwärts in die Erdkruste vordringen oder sogar die Erdoberfläche erreichen, nehmen sie wieder die 'normale' kristalline Struktur des Dolomits an.

Veröffentlichung:

Marco Merlini, Wilson A. Crichton, Michael Hanfland, Mauro Gemmi, Harald Müller, Ilya Kupenko, and Leonid Dubrovinsky,
Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle,
in: PNAS 2012 109 (34) 13509-13514;
published ahead of print August 6, 2012.
DOI: 10.1073/pnas.1201336109
Ansprechpartner:

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Tel.:+49 (0)921 55 3736/3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie