Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kontrollierte Beschichtung von Gleitlagern durch Infrarot-Wärme

13.11.2008
  • Eine Metalllegierung verleiht Lagern bessere Gleitfähigkeit
  • Wärme hilft beim Aufbringen der Legierung
  • Ein maßgeschneidertes Infrarot-System von Heraeus Noblelight löst diesen Wärmeprozess besonders effizient

Getriebe, Turbinen oder Pumpen brauchen Lager, damit sie zuverlässig funktionieren. Ein Schlüsselprozess bei der Herstellung von Lagern ist die Beschichtung eines Metallkörpers mit einer Legierung, die den Lagern später Notlaufeigenschaften verleiht. Wärme sorgt für eine gute Verteilung und für das Anhaften der Legierung.


Heraeus Werksbild
Infrarot-Strahler von Heraeus Noblelight bei der Beschichtung von Gleitlagern.
Copyright Heraeus Noblelight 2008

Ein exakt auf den Prozess maßgeschneiderter Infrarot-Ofen von Heraeus Noblelight hilft dem britischen Unternehmen Michell Bearings, die Produktion von Lagern für den Schiffbau wesentlich kontrollierter durchzuführen. Gleichzeitig sorgt das neue Infrarot-System für eine saubere und sichere Arbeitsumgebung.

Durch den Infrarot-Ofen wird Wärme genau dann aufgebracht, wenn sie nötig ist und zwar gezielt an der Oberfläche der Lager, das macht den Prozess besonders energieeffizient.

Michell Bearings besteht seit mehr als 80 Jahren in Newcastle upon Tyne in Großbritannien. Heute ist Michell Bearings ein Teil des Rolls Royce Marine Systems und der führende Entwickler und Hersteller von geschlossenen Lagern für Getriebe, Turbinen, Pumpen oder Ventilatoren im maritimen und industriellen Bereich.

Einige Lager von Michell Bearings werden mit einer Legierung aus Zinn, Kupfer und Antimon beschichtet. Diese Legierung hilft, die Reibung zu verringern und so ein Lager gleitfähiger zu machen. Es gibt verschiedene Methoden, diese Metalllegierung auf die Grundmetallform aufzubringen. In jedem Fall hilft Wärme, damit ein gutes Fließen und Anhaften der Legierung erreicht wird.

Konventionell wird beispielsweise die Grundform in ein heißes Zinnbad getaucht, oder aber eine nackte Gasflamme auf die Metallform gerichtet, beide Methoden bringen allerdings Metall zum Abdampfen, was für die Arbeitsumgebung nicht nur schmutzig und gefährlich, sondern vor allem ungesund ist.

Maßgeschneidertes Infrarot-System für die Metalllegierung
Um diese Umweltprobleme zu vermeiden und auch um eine bessere Kontrolle über den Beschichtungsprozess zu erhalten, installierte Michell Bearings in Zusammenarbeit mit Heraeus Noblelight in der Anlage in Newcastle ein maßgeschneidertes Infrarot-System.

Das Modul hat eine Nennleistung von 32 kW, enthält 16 mittelwellige Infrarot-Strahler und wurde über einer bestehenden flachen Beschichtungsstation eingepasst.

In Betrieb wird ein kugelgestrahltes Lager aus Stahl auf ein Lagerbett geschoben. Das Infrarot-Modul wird mit Hilfe von Schienen manuell in Position gebracht und über dem Lager eingehakt bevor die Strahler angeschaltet werden. Über ein Infrarot-Thermometer wird die Temperatur der Metalloberfläche kontrolliert. Wenn diese 280 °C erreicht hat, werden die Strahler abgeschaltet und die Infrarot-Haube von dem heißen Lager weg bewegt. Danach wird ein Drehmechanismus aktiviert und in das Lager, das sich nun um sich selbst dreht, wird die Metalllegierung eingegossen. Durch die Zentrifugalkräfte verteilt sich die Legierung gleichmäßig über das ganze Lager. Das beschichtete Lager wird schließlich durch eine Besprühung mit einem Luft-Wassergemisch abgekühlt.

Diese Methode ist erheblich sauberer und weniger gefährlich als die konventionellen Beschichtungsmethoden für Metalllegierungen. Außerdem lässt sich die Infrarot-Erwärmung viel besser kontrollieren und das verbessert die Qualität der Lager. Nicht zuletzt wird durch das neue Infrarot-System Energie gespart. Das Infrarot-Modul muss nur dann angeschaltet werden, wenn die Wärme benötigt wird und die Strahlung kann genau auf die Oberfläche des Lagers gerichtet werden, das macht den ganzen Prozess sehr energieeffizient.

Heraeus Noblelight GmbH mit Sitz in Hanau, mit Tochtergesellschaften in den USA, Großbritannien, Frankreich, China, Australien und Puerto Rico, gehört weltweit zu den Markt- und Technologieführern bei der Herstellung von Speziallichtquellen. Heraeus Noblelight wies 2007 einen Jahresumsatz von 90 Millionen € auf und beschäftigte weltweit 666 Mitarbeiter. Das Unternehmen entwickelt, fertigt und vertreibt Infrarot- und Ultraviolett-Strahler für Anwendungen in industrieller Produktion, Umweltschutz, Medizin und Kosmetik, Forschung und analytischen Messverfahren.

Der Edelmetall- und Technologiekonzern Heraeus mit Sitz in Hanau ist ein weltweit tätiges Familienunternehmen mit über 155jähriger Tradition. Unsere Geschäftsfelder umfassen die Bereiche Edelmetalle, Sensoren, Dental- und Medizinprodukte, Quarzglas und Speziallichtquellen. Mit einem Produktumsatz von 3 Mrd. € und einem Edelmetall-Handelsumsatz von 9 Mrd. € sowie weltweit mehr als 11.000 Mitarbeitern in über 100 Gesellschaften hat Heraeus eine führende Position auf seinen globalen Absatzmärkten.

Für weitere Informationen wenden Sie sich bitte an:

Hersteller:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Redaktion:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Weitere Informationen:
http://www.heraeus.com
http://www.heraeus-noblelight.com/infrared

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops