Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kollagen: Ein Protein sorgt für Spannung

23.01.2015

Kollagenfasern können Knochen, Sehnen und Bänder nicht nur passiv stützen, sondern auch aktiv zusammenziehen

Die Körper von Menschen und Tieren verdanken ihre Festigkeit vor allem einem faserbildenden Protein, dem Kollagen. Knochen, Sehnen, Bänder oder die Haut enthalten es in großen Mengen. Ein Stoff, der mit Festigkeit wenig assoziiert wird, nämlich Wasser, entpuppt sich nun als integraler Bestandteil des Kollagens, wie Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam-Golm, in Zusammenarbeit mit Forschern von dem Massachusetts Institute of Technology in Cambridge (USA), zeigten.


Röntgenblick auf Kollagen: Aus den Mustern der zweidimensionalen Röntgenbeugung lassen sich Informationen über Änderungen in der molekularen und nanoskopischen Kollagenstruktur gewinnen, wenn das Protein trocknet. Die Struktur des Kollagens ist für die Krafterzeugung ausschlaggebend.

© Nature Communications 2015 / MPI für Kolloid- und Grenzflächenforschung

Das Team um Admir Masic und Luca Bertinetti entfernte Wasser aus Kollagenfasern, was sich dramatisch auswirkte. Die Fasern zogen sich zusammen und erreichten dadurch eine 300-Mal stärkere Spannung, als Muskeln sie auszuüben vermögen. Dieses Wissen könnte für neuartige, aktive Materialien genutzt werden. Die Ergebnisse deuten aber auch darauf hin, dass Kollagen in Lebewesen mehr Funktionen übernehmen kann, als bisher angenommen. Demnach spielt es nicht nur eine passive Rolle, nämlich als eine Art Stützapparat für den Organismus. Es kann auch eine aktive Rolle spielen, etwa bei der Bildung von Knochen.

Einem Gebäude ähnlich ist Kollagen hierarchisch aus einer komplexen Anordnung von Einzelbausteinen aufgebaut. Der Basisbaustein ist das Kollagenmolekül. Es erinnert an ein Seil: Drei kettenförmige Proteine winden sich umeinander und bilden so eine Dreifachhelix. Viele dieser „Seile“ wiederum verbinden sich zu dickeren „Tauen“, so genannten Kollagenfibrillen. Mit rund 100–500 Nanometern Dicke sind die Fibrillen allerdings 100 000 Mal dünner als wirkliche Taue. In den Fibrillen liegen benachbarte Kollagenmoleküle nicht bündig aneinander, sondern versetzt, sodass eine gestaffelte Anordnung entsteht. Das führt entlang der Fibrille zu einander abwechselnden dichteren und weniger dichten Zonen. Viele Fibrillen wiederum bündeln sich zu Kollagenfasern.

Welche Eigenschaften Kollagen aufweist und vor allem wie das in ihm enthaltene Wasser seine Funktion beeinflusst, haben nun Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenflächenforschung in Potsdam-Golm untersucht. Das Besondere an der Studie des Golmer Teams: Es kombinierte erstmals verschiedene Messmethoden, um Kollagen auf verschiedenen Ebenen seines hierarchischen Aufbaus zu untersuchen, und kontrollierte dabei in einer Feuchtigkeitskammer den Wassergehalt des Naturstoffes. Eine spezielle Vorrichtung in der Kammer maß die Spannungskräfte, die auf das aus Rattenschwänzen gewonnene Kollagen wirkten.

Wasser ist ein wesentlicher Bestandteil des Kollagens

Die Messergebnisse brachten die Golmer Forscher in Einklang mit Computermodellen von Kollagenmolekülen, entwickelt von Wissenschaftlern des Massachusetts Institute of Technology in Cambridge (USA). So kam es der Rolle des Wassers im Kollagen bis ins Detail auf die Spur.

„Wasser ist ein integraler Bestandteil von Kollagen“, sagt Admir Masic. Im natürlichen Zustand macht es rund 60 Gewichtsprozent des Kollagens aus. Wassermoleküle fügten sich so nahtlos in das Kollagen ein, dass sie dessen Helixform folgen, berichtet Masic. Das fand das Team durch Untersuchungen mit Röntgenbeugung heraus. Mit dieser Methode lassen sich Details der Helixstruktur erforschen, etwa die Neigung der Windungen oder der Durchmesser der Helix.

Bei dem hohen Wassergehalt verwundert es nicht, dass sich der Entzug von Wasser dramatisch auswirkt. Nimmt die relative Luftfeuchtigkeit von 95 auf 5 Prozent ab, trocknet man das Kollagen also praktisch aus, ziehen sich Kollagenmoleküle um 1,3 Prozent und die entsprechenden Fibrillen um 2,5 Prozent zusammen. Trotz dieser relativ geringen Längenänderung entsteht dabei ein Zug von 100 Megapascal, was über 300 Mal mehr ist, als ein Muskel an Zug erzeugt.

Dichte Regionen der Fibrillen dehnen sich, dünne ziehen sich zusammen

Auch dem Mechanismus dieser Kontraktion kamen die Forscher um Masic und Bertinetti auf die Spur. Dafür nutzten sie die Raman-Spektroskopie, mit der sie die Konformation der Molekülketten des Kollagens untersuchten. Mit „Konformation" ist die Lage gemeint, die Atome zueinander einnehmen. Dabei zeigte sich, dass die Verkürzung durch Änderungen der Konformation hervorgerufen wird. Vorstellen kann man sich das mit einem zunächst gestreckten Seil, das in Wellen geworfen wird, sodass die Enden näher zusammenrücken. Ein interessantes Detail des Mechanismus: Die dichten Regionen der Fibrillen dehnten sich, während sich die dünneren zusammenzogen. Unterm Strich ergab sich so eine Kontraktion.

„Mit diesem Wissen könnten Materialien entwickelt werden, die sich bei Entzug von Wasser gegensätzlich verhalten“, sagt Luca Bertinetti. Er denkt dabei zum Beispiel an aufeinander geklebte Schichten von zwei Materialien, von denen sich das eine bei Entzug von Wasser dehnt und das andere zusammenzieht. Die Doppelschicht würde sich dann biegen. Die Messergebnisse des Teams zeigen, dass solche Werkstoffe große Kräfte ausüben könnten. Auch für die Produktion von Leder oder Pergamentpapier könnten die neuen Erkenntnisse aufschlussreich sein.

Potenzielle und noch unerforschte aktive Funktion von Kollagenfibrillen

Doch nicht nur für die Technik sind die Ergebnisse aus Golm interessant. Zwar kommt ein so starker Wasserentzug wie in der Feuchtigkeitskammer der Forscher unter physiologischen Bedingungen im Körper eines Lebewesens nicht vor. Doch Masic’s und Bertinetti’s Team hat festgestellt, dass der Wasserentzug auch unter biologischen Verhältnissen groß genug sein kann, damit das Kollagen eine ebenso große Zugspannung aufbaut wie ein Muskel.

Daher könnte das Biomolekül statt einer passiven, nämlich der mechanischen Stabilisierung des Körpers, auch eine aktive Rolle spielen. „Während des Aufbaus von Knochen könnte dem darin enthaltenen Kollagen Wasser entzogen werden, so dass es sich zusammenzieht“, sagt der Direktor des Institutes, Peter Fratzl, der diese Forschungsarbeit koordiniert hat. Dadurch werde der Knochen zusammengedrückt, was verhindere, dass das eigentlich spröde Material durch Zugspannungen auseinandergerissen werden kann. Eine ähnliche Rolle spiele der Stahl im Stahlbeton, vergleicht Fratzl.

Unterstützt wird diese Annahme dadurch, dass der Abstand zwischen den dichten Zonen der Kollagenfibrillen in Knochen der gleiche ist wie in getrocknetem Kollagen und dass die Zugfestigkeit von Knochen in etwa der Spannung von getrocknetem Kollagen entspricht.

In nächster Zukunft wollen die Golmer Forscher die mögliche physiologische Rolle der Kollagenkontraktion in verschiedenen Geweben erforschen.


Ansprechpartner

Dr. Admir Mašić
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9419

E-Mail: admir.masic@mpikg.mpg.de


Prof. Dr. Peter Fratzl
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9401

Fax: +49 331 567-9402

E-Mail: gabbe@mpikg.mpg.de


Originalpublikation
Admir Masic, Luca Bertinetti, Roman Schuetz, Shu-Wei Chang, Hartmut Metzger, Markus J. Buehler & Peter Fratzl

Osmotic pressure induced tensile forces in tendon collagen

Nature Communications; 22 January 2015; DOI: 10.1038/ncomms6942

Dr. Admir Mašić | Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie