Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kollagen: Ein Protein sorgt für Spannung

23.01.2015

Kollagenfasern können Knochen, Sehnen und Bänder nicht nur passiv stützen, sondern auch aktiv zusammenziehen

Die Körper von Menschen und Tieren verdanken ihre Festigkeit vor allem einem faserbildenden Protein, dem Kollagen. Knochen, Sehnen, Bänder oder die Haut enthalten es in großen Mengen. Ein Stoff, der mit Festigkeit wenig assoziiert wird, nämlich Wasser, entpuppt sich nun als integraler Bestandteil des Kollagens, wie Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam-Golm, in Zusammenarbeit mit Forschern von dem Massachusetts Institute of Technology in Cambridge (USA), zeigten.


Röntgenblick auf Kollagen: Aus den Mustern der zweidimensionalen Röntgenbeugung lassen sich Informationen über Änderungen in der molekularen und nanoskopischen Kollagenstruktur gewinnen, wenn das Protein trocknet. Die Struktur des Kollagens ist für die Krafterzeugung ausschlaggebend.

© Nature Communications 2015 / MPI für Kolloid- und Grenzflächenforschung

Das Team um Admir Masic und Luca Bertinetti entfernte Wasser aus Kollagenfasern, was sich dramatisch auswirkte. Die Fasern zogen sich zusammen und erreichten dadurch eine 300-Mal stärkere Spannung, als Muskeln sie auszuüben vermögen. Dieses Wissen könnte für neuartige, aktive Materialien genutzt werden. Die Ergebnisse deuten aber auch darauf hin, dass Kollagen in Lebewesen mehr Funktionen übernehmen kann, als bisher angenommen. Demnach spielt es nicht nur eine passive Rolle, nämlich als eine Art Stützapparat für den Organismus. Es kann auch eine aktive Rolle spielen, etwa bei der Bildung von Knochen.

Einem Gebäude ähnlich ist Kollagen hierarchisch aus einer komplexen Anordnung von Einzelbausteinen aufgebaut. Der Basisbaustein ist das Kollagenmolekül. Es erinnert an ein Seil: Drei kettenförmige Proteine winden sich umeinander und bilden so eine Dreifachhelix. Viele dieser „Seile“ wiederum verbinden sich zu dickeren „Tauen“, so genannten Kollagenfibrillen. Mit rund 100–500 Nanometern Dicke sind die Fibrillen allerdings 100 000 Mal dünner als wirkliche Taue. In den Fibrillen liegen benachbarte Kollagenmoleküle nicht bündig aneinander, sondern versetzt, sodass eine gestaffelte Anordnung entsteht. Das führt entlang der Fibrille zu einander abwechselnden dichteren und weniger dichten Zonen. Viele Fibrillen wiederum bündeln sich zu Kollagenfasern.

Welche Eigenschaften Kollagen aufweist und vor allem wie das in ihm enthaltene Wasser seine Funktion beeinflusst, haben nun Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenflächenforschung in Potsdam-Golm untersucht. Das Besondere an der Studie des Golmer Teams: Es kombinierte erstmals verschiedene Messmethoden, um Kollagen auf verschiedenen Ebenen seines hierarchischen Aufbaus zu untersuchen, und kontrollierte dabei in einer Feuchtigkeitskammer den Wassergehalt des Naturstoffes. Eine spezielle Vorrichtung in der Kammer maß die Spannungskräfte, die auf das aus Rattenschwänzen gewonnene Kollagen wirkten.

Wasser ist ein wesentlicher Bestandteil des Kollagens

Die Messergebnisse brachten die Golmer Forscher in Einklang mit Computermodellen von Kollagenmolekülen, entwickelt von Wissenschaftlern des Massachusetts Institute of Technology in Cambridge (USA). So kam es der Rolle des Wassers im Kollagen bis ins Detail auf die Spur.

„Wasser ist ein integraler Bestandteil von Kollagen“, sagt Admir Masic. Im natürlichen Zustand macht es rund 60 Gewichtsprozent des Kollagens aus. Wassermoleküle fügten sich so nahtlos in das Kollagen ein, dass sie dessen Helixform folgen, berichtet Masic. Das fand das Team durch Untersuchungen mit Röntgenbeugung heraus. Mit dieser Methode lassen sich Details der Helixstruktur erforschen, etwa die Neigung der Windungen oder der Durchmesser der Helix.

Bei dem hohen Wassergehalt verwundert es nicht, dass sich der Entzug von Wasser dramatisch auswirkt. Nimmt die relative Luftfeuchtigkeit von 95 auf 5 Prozent ab, trocknet man das Kollagen also praktisch aus, ziehen sich Kollagenmoleküle um 1,3 Prozent und die entsprechenden Fibrillen um 2,5 Prozent zusammen. Trotz dieser relativ geringen Längenänderung entsteht dabei ein Zug von 100 Megapascal, was über 300 Mal mehr ist, als ein Muskel an Zug erzeugt.

Dichte Regionen der Fibrillen dehnen sich, dünne ziehen sich zusammen

Auch dem Mechanismus dieser Kontraktion kamen die Forscher um Masic und Bertinetti auf die Spur. Dafür nutzten sie die Raman-Spektroskopie, mit der sie die Konformation der Molekülketten des Kollagens untersuchten. Mit „Konformation" ist die Lage gemeint, die Atome zueinander einnehmen. Dabei zeigte sich, dass die Verkürzung durch Änderungen der Konformation hervorgerufen wird. Vorstellen kann man sich das mit einem zunächst gestreckten Seil, das in Wellen geworfen wird, sodass die Enden näher zusammenrücken. Ein interessantes Detail des Mechanismus: Die dichten Regionen der Fibrillen dehnten sich, während sich die dünneren zusammenzogen. Unterm Strich ergab sich so eine Kontraktion.

„Mit diesem Wissen könnten Materialien entwickelt werden, die sich bei Entzug von Wasser gegensätzlich verhalten“, sagt Luca Bertinetti. Er denkt dabei zum Beispiel an aufeinander geklebte Schichten von zwei Materialien, von denen sich das eine bei Entzug von Wasser dehnt und das andere zusammenzieht. Die Doppelschicht würde sich dann biegen. Die Messergebnisse des Teams zeigen, dass solche Werkstoffe große Kräfte ausüben könnten. Auch für die Produktion von Leder oder Pergamentpapier könnten die neuen Erkenntnisse aufschlussreich sein.

Potenzielle und noch unerforschte aktive Funktion von Kollagenfibrillen

Doch nicht nur für die Technik sind die Ergebnisse aus Golm interessant. Zwar kommt ein so starker Wasserentzug wie in der Feuchtigkeitskammer der Forscher unter physiologischen Bedingungen im Körper eines Lebewesens nicht vor. Doch Masic’s und Bertinetti’s Team hat festgestellt, dass der Wasserentzug auch unter biologischen Verhältnissen groß genug sein kann, damit das Kollagen eine ebenso große Zugspannung aufbaut wie ein Muskel.

Daher könnte das Biomolekül statt einer passiven, nämlich der mechanischen Stabilisierung des Körpers, auch eine aktive Rolle spielen. „Während des Aufbaus von Knochen könnte dem darin enthaltenen Kollagen Wasser entzogen werden, so dass es sich zusammenzieht“, sagt der Direktor des Institutes, Peter Fratzl, der diese Forschungsarbeit koordiniert hat. Dadurch werde der Knochen zusammengedrückt, was verhindere, dass das eigentlich spröde Material durch Zugspannungen auseinandergerissen werden kann. Eine ähnliche Rolle spiele der Stahl im Stahlbeton, vergleicht Fratzl.

Unterstützt wird diese Annahme dadurch, dass der Abstand zwischen den dichten Zonen der Kollagenfibrillen in Knochen der gleiche ist wie in getrocknetem Kollagen und dass die Zugfestigkeit von Knochen in etwa der Spannung von getrocknetem Kollagen entspricht.

In nächster Zukunft wollen die Golmer Forscher die mögliche physiologische Rolle der Kollagenkontraktion in verschiedenen Geweben erforschen.


Ansprechpartner

Dr. Admir Mašić
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9419

E-Mail: admir.masic@mpikg.mpg.de


Prof. Dr. Peter Fratzl
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9401

Fax: +49 331 567-9402

E-Mail: gabbe@mpikg.mpg.de


Originalpublikation
Admir Masic, Luca Bertinetti, Roman Schuetz, Shu-Wei Chang, Hartmut Metzger, Markus J. Buehler & Peter Fratzl

Osmotic pressure induced tensile forces in tendon collagen

Nature Communications; 22 January 2015; DOI: 10.1038/ncomms6942

Dr. Admir Mašić | Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

Autonomes Fahren wirft viele Fragen auf

20.09.2017 | Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungsnachrichten

Molekulare Kraftmesser

20.09.2017 | Biowissenschaften Chemie

Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen

20.09.2017 | Ökologie Umwelt- Naturschutz