Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoff in Vestas Kratern

04.01.2013
Gewaltige Einschläge von Asteroiden könnten kohlenstoffreiches Material auf den Protoplaneten und ins innere Sonnensystem getragen haben

Der Protoplanet Vesta hat eine bewegte Vergangenheit: Aufnahmen der deutschen Framing Camera an Bord der NASA-Raumsonde Dawn, die Vesta bis September dieses Jahres etwa ein Jahr lang begleitet hat, zeigen zwei gewaltige Krater auf der Südseite des Himmelskörpers.

Doch die gigantischen Einschläge haben nicht nur seine Form, sondern auch seine mineralogische Zusammensetzung dauerhaft verändert. Wissenschaftler unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Katlenburg-Lindau konnten nun zeigen, dass die beiden kosmischen Brocken, welche die Südseite der Vesta erschütterten, dunkles, kohlenstoffhaltiges Material mitbrachten. Ähnliche Ereignisse könnten in der Frühzeit des Sonnensystems auch die inneren Planeten wie die Erde mit Kohlenstoff, einem Grundbaustein organischer Verbindungen, versorgt haben.

Vesta ist in vielerlei Hinsicht bemerkenswert. Zum einen ist der Himmelskörper, der zwischen den Bahnen von Mars und Jupiter um die Sonne kreist und einen Durchmesser von etwa 530 Kilometern hat, einer der wenigen Protoplaneten in unserem Sonnensystem, die heute noch intakt sind.

Wie andere Protoplaneten war Vesta vor etwa 4,5 Milliarden Jahren ein heißer, geschmolzener Körper. Wissenschaftler gehen jedoch davon aus, dass der Großteil der vulkanischen Aktivität nach nur wenigen Millionen Jahren zum Erliegen kam. Vesta ist somit eine Art Zeitkapsel aus einer frühen Entwicklungsphase des Sonnensystems.

Zum anderen haben die Aufnahmen der Raumsonde Dawn eine Oberfläche mit ausgeprägten Unterschieden in Helligkeit und Zusammensetzung offenbart. Es gibt auf Vesta helles Material, das so weiß ist wie Schnee, und dunkle Bereiche, die so schwarz sind wie Kohle.

Besonders dieses rätselhafte, dunkle Material könnte weiteren Aufschluss über die Entwicklung und Vergangenheit des Protoplaneten – und damit des gesamten Sonnensystems – geben. Eine Forschergruppe unter Leitung des Max-Planck-Instituts in Katlenburg-Lindau konnte zeigen, dass dieses Material nicht ursprünglich zu Vesta gehörte, sondern durch Einschläge von Asteroiden eingebracht wurde.
„Vieles spricht dafür, dass das dunkle Material sehr reich an Kohlenstoff ist“, erklärt Vishnu Reddy vom Max-Planck-Institut für Sonnensystemforschung und der Universität von North Dakota in den USA, Erstautor der neuen Studie. In der Fachzeitschrift Icarus haben er und seine Kollegen nun die bisher umfassendste Analyse dieses Materials vorgelegt. Die detaillierten Untersuchungen legen einen Zusammenhang zwischen dem dunklen Material und den beiden riesigen Asteroideneinschlägen nahe, die Vestas Südhalbkugel prägen

Das dunkle Material kam mit dem ersten Einschlag auf den Protoplaneten

„In einem ersten Schritt haben wir eine genaue Übersichtskarte erstellt, welche die Verteilung des dunklen Materials zeigt“, erklärt Lucille Le Corre vom Max-Planck-Institut für Sonnensystemforschung. Diese Informationen konnten die Forscher den Aufnahmen des Kamerasystems an Bord der Raumsonde Dawn entnehmen, das Wissenschaftler unter Leitung von Vishnu Reddy und seinen Max-Planck-Kollegen entwickelt und gebaut hatten. „Dabei haben wir etwas Erstaunliches entdeckt“, fährt sie fort. Das dunkle Material gruppiert sich in erster Linie um die Ränder der beiden großen Krater auf der Südhalbkugel. Genauere Untersuchungen zeigten, dass dieses Gestein wahrscheinlich mit dem ersten der beiden Einschläge, der vor etwa zwei bis drei Milliarden Jahren das Veneneia-Becken bildete, auf den Protoplaneten kam. Der zweite Einschlag, in dessen Folge das riesige Rheasilvia-Becken entstand, hat einen Teil dieses Material dann später überdeckt.
Umfangreiche Modellrechnungen der Max-Planck-Forscher unterstützen die Theorie der zwei Einschläge – und erlauben zudem genaueren Aufschluss über deren Verlauf. So konnten die Wissenschaftler in Computersimulationen bestimmen, welche Aufprallgeschwindigkeiten mit den gefundenen Konzentrationen des dunklen Materials vereinbar sind. „Alles spricht für einen vergleichsweise langsamen Zusammenstoß mit Geschwindigkeiten von weniger als zwei Kilometern pro Sekunde“, so Reddy. Der Einschlag im Nördlinger Ries im Süden Deutschlands geschah dagegen bei etwa 20 Kilometern pro Sekunde. Und auch die räumliche Verteilung des Materials, welche die Forscher berechnen konnten, entspricht dem Bild, das sich heute zeigt.

HED-Meteorite sind Bruchstücke von Vesta

Informationen über das dunkle Material liefern auch die sogenannten HED-Meteorite, die der Vesta entstammen. Einige dieser Meteoriten zeigen dunkle Einschlüsse, die ebenfalls reich an Kohlenstoff sind. Das Kürzel HED steht dabei für die Gesteinsarten Howardit, Eucrit und Diogenit, aus denen diese Meteoriten in erster Linie bestehen. „Durch genaue Analyse des dunklen Materials auf der Vesta und Vergleichen mit Laboruntersuchungen dieser Meteorite konnten wir nun den ersten direkten Beweis liefern, dass die HED-Meteorite tatsächlich Bruchstücke von Vesta sind“, so Le Corre.
„Bei unseren Analysen geht es längst nicht nur darum, die genaue Entwicklungsgeschichte der Vesta zu rekonstruieren“, betont Holger Sierks, Co-Investigator der Dawn-Mission am Max-Planck-Institut in Katlenburg-Lindau. Vielmehr wollen die Forscher die Bedingungen im frühen Sonnensystem verstehen.

Die Mission Dawn startete vor etwa fünf Jahren ins All und schwenkte am 16. Juli 2011 in eine Umlaufbahn um den Protoplaneten Vesta ein. 2015 soll die Raumsonde ihr zweites Reiseziel, den Zwergplaneten Ceres, erreichen, der wie Vesta im sogenannten Asteroidengürtel zwischen den Umlaufbahnen des Mars und des Jupiter um die Sonne kreist. Die Mission Dawn wird vom Jet Propulsion Laboratory (JPL) der amerikanischen Weltraumbehörde NASA geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Katlenburg-Lindau in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und NASA/JPL unterstützt.
Ansprechpartner
Dr. Birgit Krummheuer,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-462
E-Mail: Krummheuer@­mps.mpg.de
Prof. Dr. Vishnu Reddy,
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-550
E-Mail: Reddy@­mps.mpg.de
Dr. Lucille Le Corre,
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-143
E-Mail: Lecorre@­mps.mpg.de
Dr. Holger Sierks,
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-242
E-Mail: Sierks@­mps.mpg.de
Originalpublikation
Vishnu Reddy, Lucille Le Corre et al.
Delivery of dark material to Vesta via carbonaceous chondritic impacts
Icarus, November – Dezember 2012

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6771183/kohlenstoff_in_vestas_kratern?seite=1

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie