Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoff-Riesenmoleküle lassen die Heizkosten sinken

01.02.2013
Bayreuther Polymerwissenschaftler entwickeln im Forschungsverbund „FUNgraphen“ neuartige Materialien für die Wärmedämmung

Wärmedämmende Materialien zu entwickeln, mit denen sich die Energieeffizienz von Gebäuden erheblich steigern lässt, ist eine zunehmend dringliche Herausforderung. Schon seit geraumer Zeit werden beim Hausbau Kunststoff-Schäume verwendet, um Dach und Außenwände besser zu isolieren. Einem Forschungsteam um Prof. Dr.-Ing. Volker Altstädt an der Universität Bayreuth ist es jetzt gelungen, diese Isolationswirkung erheblich zu steigern. Auf der Basis von Polystyrol-Schäumen haben die Bayreuther Wissenschaftler neuartige Dämmmaterialien entwickelt, die zu einer drastischen Senkung von Heizkosten beitragen können.


Elektronenmikroskopische Aufnahme eines Polystyrol-Schaums: Links mit einem herkömmlichen Talk-Füllstoff, rechts mit Graphenen als Zusatz. Die Kohlenstoff-Riesenmoleküle verkleinern die Zellen im Schaum erheblich. Sie machen 1 Prozent des Gewichts des Polystyrol-Schaums aus.

Der Grund dafür liegt in äußerst wirkungsvollen Zutaten, welche die Bayreuther Wissenschaftler dem Polystyrol beigemischt haben. Es handelt sich dabei um extrem dünne Kohlenstoffplättchen, sogenannte Graphene. Diese Plättchen sind flächige Netzwerke von Kohlenstoffatomen, die in sechseckigen Waben angeordnet sind. Es sind Riesenmoleküle, denn in der Länge und Breite beträgt ihre Ausdehnung rund 350 Nanometer. Aber wegen ihres flächigen Aufbaus erreichen sie nur eine Höhe von rund 10 Nanometern.

Graphene im Kunststoff-Schaum verkleinern die Hohlräume und senken die Durchlässigkeit für infrarote Strahlung

Polystyrol-Schäume bestehen aus vielen kleinen hohlen Zellen, die durch Kunststoffwände voneinander getrennt sind. Normalerweise haben diese Zellen einen Durchmesser von rund 100 Mikrometern. Sobald aber dem Kunststoff die Kohlenstoffplättchen beigemischt werden, verringert sich die Zellgröße auf 25 Mikrometer. Die Folgen für die Isolationswirkung sind enorm.

Denn aufgrund der verkleinerten Zellen wird die Gaswärmeleitung deutlich vermindert; das heißt, es fließt eine wesentlich geringere Wärmemenge durch die im Kunststoff-Schaum enthaltene Luft. Zudem wird aufgrund der Graphen-Plättchen die infrarote Strahlung abgesenkt. Denn infrarote Strahlung, die einen hohen Anteil an der aus Wohnräumen entweichenden Wärme hat, kann den Kunststoff-Schaum kaum noch durchdringen. Sie wird größtenteils reflektiert oder vom Kunststoff absorbiert.

Folglich eignen sich die mit Graphenen versetzten Schäume vorzüglich als Dämmmaterialien, die dafür sorgen, dass die Wärme in den Wohnräumen bleibt. „Die neuen Polystyrol-Schäume lassen sich ohne hohen technischen Aufwand industriell herstellen, so dass künftig im Baubereich erhebliche Einsparungen möglich werden“, erklärt Prof. Dr.-Ing. Volker Altstädt, der an der Universität Bayreuth den Lehrstuhl für Polymere Werkstoffe innehat.

„FUNgraphen“ – ein materialwissenschaftliches Forschungsprojekt stärkt die Energie- und Ressourceneffizienz

Die wärmedämmenden Kunststoffschäume sind eines von zahlreichen Ergebnissen des auf mehrere Universitäten und Forschungseinrichtungen verteilten Forschungsprojekts „FUNgraphen“. Die Leitung des Gesamtprojekts liegt bei Prof. Dr. Rolf Mülhaupt am Freiburger Materialforschungszentrum (FMF), einer Einrichtung der Universität Freiburg. Darüber hinaus sind auch die Berliner Bundesanstalt für Materialforschung und -prüfung (BAM) und das Fraunhofer-Institut für Werkstoffmechanik in Freiburg in die Forschungsarbeiten eingebunden.

„FUNgraphen“ – der Projektname steht für „Functional Graphen“ – zielt darauf ab, aus riesigen Kohlenstoffmolekülen neue Materialien zu entwickeln, die in verschiedensten Lebensbereichen den Verbrauch von Energie und Ressourcen senken, ohne Komfort und Lebensqualität zu beeinträchtigen.

In diesem Zusammenhang ist es den Projektpartnern gelungen, einzelne Graphene im Labor zu isolieren und mit Kunststoffmolekülen zu verknüpfen. In der Natur kommen diese Kohlenstoffplättchen nicht vereinzelt vor. Es gibt sie hauptsächlich als Bestandteile des Minerals Graphit, wo die wabenartig vernetzten Kohlenstoffatome in kristallinen Strukturen tausendfach aufeinander geschichtet sind. Das Verfahren, die Graphene aus diesen Strukturen herauszulösen und in Kunststoffe einzubringen, eröffnet jetzt neue Perspektiven für Materialien, die das Prinzip der Nachhaltigkeit in Industrie und Wirtschaft erheblich stärken. Dipl.-Ing. Thomas Köppl, wissenschaftlicher Mitarbeiter an der Universität Bayreuth, meint: „Die von uns entwickelten Dämmmaterialien sind nur ein Beispiel für das hohe Innovationspotenzial, das in diesem Gemeinschaftsprojekt steckt und noch längst nicht ausgeschöpft ist.“

Kontakte zum neuen EU-Flaggschiff „Graphene“

Der Forschungsverbund „FUNgraphen“ wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und von einem Industriebeirat begleitet. Das Freiburger Materialforschungszentrum (FMF) ist – parallel zur Koordination dieses Projekts – auch als Partner in den EU-Spitzenforschungsverbund „Graphene“ eingebunden. Vor wenigen Tagen hatte die Europäische Kommission bekannt gegeben, dieses Projekt als „Future Emerging Technology Flagship“ für die kommenden 10 Jahre mit 1 Milliarde Euro fördern zu wollen.

Weitere Informationen zum Forschungsverbund „FUNgraphen“:
http://idw-online.de/de/news517085
Ansprechpartner für die neuen hocheffizienten Dämmmaterialien:
Prof. Dr.-Ing. Volker Altstädt
Lehrstuhl für Polymere Werkstoffe
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55 7470 und 7471
E-Mail: volker.altstaedt@uni-bayreuth.de
Text und Redaktion:
Christian Wißler M.A.
Stabsstelle Presse, Marketing und Kommunikation Universität Bayreuth
D-95440 Bayreuth
Tel.: 0921 / 55-5356 / Fax: 0921 / 55-5325
E-Mail: mediendienst-forschung@uni-bayreuth.de

Christian Wißler M.A. | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften