Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoff-Riesenmoleküle lassen die Heizkosten sinken

01.02.2013
Bayreuther Polymerwissenschaftler entwickeln im Forschungsverbund „FUNgraphen“ neuartige Materialien für die Wärmedämmung

Wärmedämmende Materialien zu entwickeln, mit denen sich die Energieeffizienz von Gebäuden erheblich steigern lässt, ist eine zunehmend dringliche Herausforderung. Schon seit geraumer Zeit werden beim Hausbau Kunststoff-Schäume verwendet, um Dach und Außenwände besser zu isolieren. Einem Forschungsteam um Prof. Dr.-Ing. Volker Altstädt an der Universität Bayreuth ist es jetzt gelungen, diese Isolationswirkung erheblich zu steigern. Auf der Basis von Polystyrol-Schäumen haben die Bayreuther Wissenschaftler neuartige Dämmmaterialien entwickelt, die zu einer drastischen Senkung von Heizkosten beitragen können.


Elektronenmikroskopische Aufnahme eines Polystyrol-Schaums: Links mit einem herkömmlichen Talk-Füllstoff, rechts mit Graphenen als Zusatz. Die Kohlenstoff-Riesenmoleküle verkleinern die Zellen im Schaum erheblich. Sie machen 1 Prozent des Gewichts des Polystyrol-Schaums aus.

Der Grund dafür liegt in äußerst wirkungsvollen Zutaten, welche die Bayreuther Wissenschaftler dem Polystyrol beigemischt haben. Es handelt sich dabei um extrem dünne Kohlenstoffplättchen, sogenannte Graphene. Diese Plättchen sind flächige Netzwerke von Kohlenstoffatomen, die in sechseckigen Waben angeordnet sind. Es sind Riesenmoleküle, denn in der Länge und Breite beträgt ihre Ausdehnung rund 350 Nanometer. Aber wegen ihres flächigen Aufbaus erreichen sie nur eine Höhe von rund 10 Nanometern.

Graphene im Kunststoff-Schaum verkleinern die Hohlräume und senken die Durchlässigkeit für infrarote Strahlung

Polystyrol-Schäume bestehen aus vielen kleinen hohlen Zellen, die durch Kunststoffwände voneinander getrennt sind. Normalerweise haben diese Zellen einen Durchmesser von rund 100 Mikrometern. Sobald aber dem Kunststoff die Kohlenstoffplättchen beigemischt werden, verringert sich die Zellgröße auf 25 Mikrometer. Die Folgen für die Isolationswirkung sind enorm.

Denn aufgrund der verkleinerten Zellen wird die Gaswärmeleitung deutlich vermindert; das heißt, es fließt eine wesentlich geringere Wärmemenge durch die im Kunststoff-Schaum enthaltene Luft. Zudem wird aufgrund der Graphen-Plättchen die infrarote Strahlung abgesenkt. Denn infrarote Strahlung, die einen hohen Anteil an der aus Wohnräumen entweichenden Wärme hat, kann den Kunststoff-Schaum kaum noch durchdringen. Sie wird größtenteils reflektiert oder vom Kunststoff absorbiert.

Folglich eignen sich die mit Graphenen versetzten Schäume vorzüglich als Dämmmaterialien, die dafür sorgen, dass die Wärme in den Wohnräumen bleibt. „Die neuen Polystyrol-Schäume lassen sich ohne hohen technischen Aufwand industriell herstellen, so dass künftig im Baubereich erhebliche Einsparungen möglich werden“, erklärt Prof. Dr.-Ing. Volker Altstädt, der an der Universität Bayreuth den Lehrstuhl für Polymere Werkstoffe innehat.

„FUNgraphen“ – ein materialwissenschaftliches Forschungsprojekt stärkt die Energie- und Ressourceneffizienz

Die wärmedämmenden Kunststoffschäume sind eines von zahlreichen Ergebnissen des auf mehrere Universitäten und Forschungseinrichtungen verteilten Forschungsprojekts „FUNgraphen“. Die Leitung des Gesamtprojekts liegt bei Prof. Dr. Rolf Mülhaupt am Freiburger Materialforschungszentrum (FMF), einer Einrichtung der Universität Freiburg. Darüber hinaus sind auch die Berliner Bundesanstalt für Materialforschung und -prüfung (BAM) und das Fraunhofer-Institut für Werkstoffmechanik in Freiburg in die Forschungsarbeiten eingebunden.

„FUNgraphen“ – der Projektname steht für „Functional Graphen“ – zielt darauf ab, aus riesigen Kohlenstoffmolekülen neue Materialien zu entwickeln, die in verschiedensten Lebensbereichen den Verbrauch von Energie und Ressourcen senken, ohne Komfort und Lebensqualität zu beeinträchtigen.

In diesem Zusammenhang ist es den Projektpartnern gelungen, einzelne Graphene im Labor zu isolieren und mit Kunststoffmolekülen zu verknüpfen. In der Natur kommen diese Kohlenstoffplättchen nicht vereinzelt vor. Es gibt sie hauptsächlich als Bestandteile des Minerals Graphit, wo die wabenartig vernetzten Kohlenstoffatome in kristallinen Strukturen tausendfach aufeinander geschichtet sind. Das Verfahren, die Graphene aus diesen Strukturen herauszulösen und in Kunststoffe einzubringen, eröffnet jetzt neue Perspektiven für Materialien, die das Prinzip der Nachhaltigkeit in Industrie und Wirtschaft erheblich stärken. Dipl.-Ing. Thomas Köppl, wissenschaftlicher Mitarbeiter an der Universität Bayreuth, meint: „Die von uns entwickelten Dämmmaterialien sind nur ein Beispiel für das hohe Innovationspotenzial, das in diesem Gemeinschaftsprojekt steckt und noch längst nicht ausgeschöpft ist.“

Kontakte zum neuen EU-Flaggschiff „Graphene“

Der Forschungsverbund „FUNgraphen“ wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und von einem Industriebeirat begleitet. Das Freiburger Materialforschungszentrum (FMF) ist – parallel zur Koordination dieses Projekts – auch als Partner in den EU-Spitzenforschungsverbund „Graphene“ eingebunden. Vor wenigen Tagen hatte die Europäische Kommission bekannt gegeben, dieses Projekt als „Future Emerging Technology Flagship“ für die kommenden 10 Jahre mit 1 Milliarde Euro fördern zu wollen.

Weitere Informationen zum Forschungsverbund „FUNgraphen“:
http://idw-online.de/de/news517085
Ansprechpartner für die neuen hocheffizienten Dämmmaterialien:
Prof. Dr.-Ing. Volker Altstädt
Lehrstuhl für Polymere Werkstoffe
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55 7470 und 7471
E-Mail: volker.altstaedt@uni-bayreuth.de
Text und Redaktion:
Christian Wißler M.A.
Stabsstelle Presse, Marketing und Kommunikation Universität Bayreuth
D-95440 Bayreuth
Tel.: 0921 / 55-5356 / Fax: 0921 / 55-5325
E-Mail: mediendienst-forschung@uni-bayreuth.de

Christian Wißler M.A. | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten