Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knochenhartes Biomaterial

01.03.2010
Bei Operationen verwendete Schrauben sind oft aus Titan. Häufig müssen Ärzte diese Metallteile nach einer Weile entfernen oder durch neue ersetzen. Ein neuartiges Biomaterial kann diesen Schritt vermeiden: Es fördert den Aufbau von Knochen und ist zugleich abbaubar.

Fußballer, Skifahrer, Tennisspieler - viele Sportler fürchten den Kreuzbandriss. Sind die Bänder im Knie lädiert, kommt der Patient meist um eine Operation nicht herum, denn nur so kann man die Stabilität des Gelenks wiederherstellen.

Bei der OP ersetzt der Arzt das gerissene Band durch ein Sehnenstück aus dem Bein und fixiert es mit einer Interferenzschraube am Knochen. Das Problem: Die Schrauben sind aus Titan. Nach einer gewissen Zeit muss der Arzt erneut operieren und das Material entfernen.

Forscher am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Bremen wollen Kreuzbandgeschädigten und anderen Knochenpatienten diesen Schritt ersparen. Deshalb haben sie eine Schraube entwickelt, die der Körper gut verträgt und die sich mit der Zeit abbaut. "Wir haben Biomaterialien so verändert, dass man daraus mit einem speziellen Spritzgussverfahren robuste bioaktive und resorbierbare Schrauben formen kann", erklärt Dr. Philipp Imgrund, Leiter der Abteilung Biomaterial-Technologie am IFAM. "Je nach Zusammensetzung bauen sie sich innerhalb von 24 Monaten ab." In der Medizintechnik nutzt man schon abbaubare Schrauben aus Polymilchsäure. Ihr Nachteil: Durch den Abbau können sie Löcher im Knochen hinterlassen. Daher haben die Forscher das Material verbessert: Sie entwickelten ein spritzgießfähiges Komposit aus Polymilchsäure und Hydroxylapatit, einer Keramik, die Hauptbestandteil des Knochenminerals ist. "Dieses Komposit besitzt einen höheren Hydroxylapatit-Anteil und fördert das Einwachsen des Knochens in das Implantat", sagt Imgrund.

Die Ingenieure haben aus den Biomaterialien ein Granulat entwickelt, das man mit herkömmlichen Spritzgussverfahren präzise verarbeiten kann. So entfällt die bisher notwendige Nachbearbeitung, wie etwa das Fräsen. "Wir können die komplexe Geometrie direkt abformen", betont Imgrund. Das Ergebnis ist eine robuste Schraube. Die Eigenschaften dieses Prototypen sind sehr nah an der des Knochens: Mehr als 130 Newton pro Quadratmillimeter entspricht deren Druckfestigkeit - ein echter Knochen hält zwischen 130 bis 180 aus. Das Spritzgussverfahren hat zudem einen positiven Nebeneffekt. Für gewöhnlich muss das Pulverspritzgussbauteil nach dem Abformen bei sehr hohen Temperaturen von bis zu 1400 Grad Celsius verdichtet werden. "Wir benötigen für unsere Kompositmaterialien nur 140 Grad", freut sich Imgrund. Die Ingenieure zeigen ihre Schraube vom 23. bis zum 25. März auf der Medtec (Halle 6, Stand 1255) in Stuttgart.

Dr.-Ing. Philipp Imgrund | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie