Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die kleinste Dampfmaschine der Welt

12.12.2011
Eine nur wenige Mikrometer große Wärmekraftmaschine funktioniert so gut wie ihr großes Gegenstück, obwohl sie stottert

Was beim Automotor einen Fall für die Werkstatt bedeutet, ist bei einem Mikromotor völlig normal. Wenn der stottert, liegt das nämlich an den thermischen Bewegungen der kleinsten Teilchen, die seinen Lauf stören.

Das haben Forscher der Universität Stuttgart und des Max-Planck-Instituts für Intelligente Systeme in Stuttgart nun an einer Wärmekraftmaschine im Mikromaßstab beobachtet. Gleichzeitig stellten sie fest, dass die Maschine unterm Strich doch Arbeit leistet.

Diese lässt sich derzeit zwar noch nicht nutzen, das Experiment der Stuttgarter Forscher zeigt aber, dass ein Motor auch im Mikromaßstab grundsätzlich funktioniert. Damit steht der Konstruktion von hocheffizienten, kleinen Wärmekraftmaschinen prinzipiell nichts im Wege.

Eine Technik, die im Großen funktioniert, kann im Kleinen unerwartete Probleme bereiten. Und die können sehr grundsätzlicher Natur sein. Denn in der Mikro- und der Makrowelt dominieren ganz andere Gesetzmäßigkeiten. Trotz unterschiedlicher Gesetze ähneln sich aber manche physikalische Vorgänge im Großen wie im Kleinen auf verblüffende Weise. Eine solche Gemeinsamkeit zwischen Mikro- und Makrowelt haben Clemens Bechinger, Professor an der Universität Stuttgart und Fellow des Max-Planck-Instituts für Intelligente Systeme, und sein Mitarbeiter Valentin Blickle nun beobachtet.

„Wir haben die kleinste Dampfmaschine, genauer gesagt den kleinsten Stirling-Motor der Welt entwickelt und festgestellt, dass die Maschine tatsächlich Arbeit verrichtet“, sagt Clemens Bechinger. „Zu erwarten war das nicht unbedingt, weil die Maschine so klein ist, dass ihre Bewegung von mikroskopischen Prozessen gestört wird, die in der Makrowelt keine Rolle spielen.“ Die Störungen führen dazu, dass die Mikromaschine sehr unrund läuft und gewissermaßen stottert.

Wegen der eigenen Gesetzmäßigkeiten in der Mikrowelt konnten die Forscher den winzigen Motor nicht nach dem Bauplan des Vorbilds gewöhnlicher Größe konstruieren. In der vor knapp 200 Jahren von Robert Stirling erfundenen Wärmekraftmaschine wird ein mit Gas gefüllter Zylinder periodisch erhitzt und abgekühlt, so dass sich das Gas ausdehnt und zusammenzieht. Dabei wird der Kolben in eine Bewegung versetzt, mit der er etwa ein Rad antreibt.

„Uns ist es gelungen, die essenziellen Teile einer Wärmemaschine wie Arbeitsgas und Kolben auf nur wenige Mikrometer zu verkleinern und diese dann zu einer Maschine zusammenzusetzen“, sagt Valentin Blickle. So besteht das Arbeitsgas im Stuttgarter Experiment nicht mehr aus unzähligen Molekülen, sondern nur noch aus einem einzelnen, etwa drei Mikrometer (ein Mikrometer entspricht einem Tausendstel Millimeter) großen Kunststoffkügelchen, das in Wasser schwebt. Da das Kolloidpartikel etwa 10 000 Mal größer als ein Atom ist, können die Forscher dessen Bewegung direkt in einem Mikroskop beobachten.

Wassermoleküle stören den Motor mit ihrer thermischen Bewegung
Den Kolben, der sich in einem Zylinder periodisch auf und ab bewegt, ersetzen die Physiker durch einen fokussierten Laserstrahl, dessen Intensität periodisch variiert wird. Die optischen Kräfte des Lasers schränken die Bewegung des Kunststoffteilchens einmal stärker und einmal weniger stark ein, ganz analog zur Kompression und Expansion des Gases im Zylinder einer großen Wärmemaschine. Dabei leistet das Teilchen Arbeit am optischen Laserfeld. Damit sich die Beiträge zur Arbeit während der Kompression und Expansion nicht gegenseitig aufheben, müssen diese bei unterschiedlichen Temperaturen stattfinden. Zu diesem Zweck wird das System – genauso wie der Kessel einer Dampfmaschine – beim Expansionsprozess von außen erhitzt. Das Kohlefeuer einer altertümlichen Dampfmaschine ersetzten die Forscher jedoch durch einen weiteren Laserstrahl, der das Wasser schlagartig erhitzt, aber auch plötzlich wieder abkühlen lässt, sobald er ausgeschaltet wird.

Dass die Stuttgarter Maschine im Gegensatz zu ihrem makroskopischen Gegenstück nicht rund läuft, liegt an den Wassermolekülen, die das Kunststoff-Kügelchen umgeben. Die Wassermoleküle bewegen sich aufgrund ihrer Temperatur ständig und stoßen daher fortwährend mit dem Mikroteilchen zusammen. Bei diesen zufälligen Kollisionen tauscht das Kunststoffteilchen mit seiner Umgebung ständig Energie aus, und zwar in einer Größenordnung, in der die Mikromaschine Energie in Arbeit verwandelt. „Dieser Effekt führt dazu, dass die gewonnene Energiemenge von Zyklus zu Zyklus stark variiert und die Maschine im Extremfall sogar zum Stillstand bringt“, erklärt Valentin Blickle. Da makroskopische Maschinen etwa 20 Größenordnungen mehr Energie umsetzen, spielen die winzigen Stoßenergien der kleinsten Teilchen in ihnen keine Rolle.

Umso erstaunter sind die Physiker, dass die Maschine trotz der schwankenden Leistung im Mittel genauso viel Energie pro Zyklus in Arbeit umsetzt und unter Volllast auch mit derselben Effizienz läuft wie ihr makroskopischen Gegenstück. „Unsere Experimente geben einen ersten Einblick in die Energiebilanz einer auf mikroskopischer Längenskala arbeitenden Wärmemaschine. Obwohl unsere Maschine noch keine nützliche Arbeite verrichtet, gibt es also keine prinzipiellen thermodynamischen Hindernisse, die das auch auf kleinen Längenskalen verbieten“ – so Clemens Bechinger. Für die Konstruktion zuverlässiger, hocheffizienter Mikromaschinen, ist das sicher eine gute Nachricht.

Ansprechpartner
Prof. Dr. Clemens Bechinger
Universität Stuttgart
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +48 711 68565-218
Fax: +49 711 68565-285
E-Mail: c.bechinger@physik.uni-stuttgart.de
Originalveröffentlichung
Valentin Blickle and Clemens Bechinger
Realization of a micrometre-sized stochastic heat engine
Nature Physics, 11 December 2011; DOI: 10.1038/NPHYS2163

Prof. Dr. Clemens Bechinger | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4689368/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie