Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleiner Sensor ganz groß

21.12.2011
Neues Prinzip zur Magnetfeldmessung mit hohem Anwendungspotenzial

Magnetfeldsensoren sind in der modernen Technik mittlerweile unverzichtbar. Ihre vielfältigen Einsatzgebiete reichen vom altbekannten Kompass bis zum modernen Auto oder Smartphone. Arbeitsgruppen der Christian-Albrechts-Universität zu Kiel (CAU) haben jetzt unter Leitung von Professor Franz Faupel einen Miniatursensor entwickelt. In der Fachzeitschrift Applied Physics Letters präsentiert das Team aus Materialwissenschaftlern und Elektrotechnikern seine Ergebnisse. Wegen der vielfältigen Anwendungsmöglichkeiten wurde der neuartige Sensor auch in dem renommierten Journal Nature als Highlight-Artikel vorgestellt.

„Der Sensor besteht aus einem winzigen Balken von 125 Mikrometern Länge“, erklärt Faupel. Ein menschliches Haar hat einen Durchmesser von etwa 100 Mikrometer. „Beschichtet ist der Balken mit einem Material, das innerhalb eines Magnetfeldes weicher wird.“ Zur Messung des Magnetfelds bringen die Wissenschaftler den Balken mechanisch zum Schwingen. Die Schwingungsfrequenz ist wiederum abhängig von der Härte der Beschichtung. „Anhand der Frequenzen können wir also die Eigenschaften eines Magnetfeldes genau bestimmen“, so Faupel weiter.

Im Gegensatz zu vorherigen Modellen sind keine zusätzlichen Magnetfelder nötig, damit der neue Sensor funktioniert. Er kann niederfrequente und statische Magnetfelder detektieren, die besonders in der Medizin eine große Rolle spielen. So könnte der Sensor den Einsatz von magnetischen Partikeln im Körper unterstützen, um beispielsweise Tumore zu bekämpfen oder Medikamente gezielt im Körper freizusetzen. Von großem Vorteil ist zudem, dass der Sensor nicht gekühlt werden muss und in bestehende Mikroelektronik integriert werden kann.

Das interdisziplinäre Team erarbeitete das neue Konzept im Rahmen des Sonderforschungsbereichs „Magnetoelektrische Verbundwerkstoffe – Biomagnetische Schnittstellen der Zukunft“ (SFB 855) an der CAU. Der Anfang 2010 bewilligte SFB 855 wird von der Deutschen Forschungsgemeinschaft (DFG) für zunächst vier Jahre gefördert und wird in der ersten Förderperiode mit rund 11,5 Millionen Euro finanziert.

Weitere Informationen: www.uni-kiel.de/aktuell/pm/2009/2009-121-sfb-855.shtml

Originalpublikation: (Appl. Phys. Lett. 99, 223502 (2011))
http://dx.doi.org/10.1063/1.3664135
Nature-Artikel: (Nature 480, 155 (08. Dezember 2011))
http://www.nature.com/nature/journal/v480/n7376/full/480155c.html
Drei Bilder stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2011/2011-224-1.jpg
Bildunterschrift: Der beschichtete Balken des Magnetfeldsensors ist nur 125µm lang. Das Prinzip des Sensors eignet sich zur Miniaturisierung und hat ein großes Anwendungspotenzial. (Rasterelektronenmikroskop-Aufnahme).

Copyright: American Institute of Physics

http://www.uni-kiel.de/download/pm/2011/2011-224-2.jpg
Bildunterschrift: Ein Prototyp des neuen Magnetfeldsensors. Die eigentliche Sensorspitze am linken Ende des Siliziumchips ist mit dem bloßen Auge kaum zu sehen.

Copyright: Björn Gojdka

http://www.uni-kiel.de/download/pm/2011/2011-224-3.jpg
Bildunterschrift: Die Idee zu dem neuen Sensorkonzept kam Björn Gojdka durch seine vorigen Arbeiten am Rasterkraftmikroskop. Dort werden die winzigen Federbalken zum Abtasten von Oberflächen genutzt.

Copyright: Björn Gojdka

Kontakt:
Professor Dr. Franz Faupel
Institut für Materialwissenschaft – Materialverbunde
Christian-Albrechts-Universität zu Kiel
Tel.: +49 (0)431 880-6226
E-Mail: ff@tf.uni-kiel.de

Dr. Boris Pawlowski | idw
Weitere Informationen:
http://www.uni-kiel.de

Weitere Berichte zu: Anwendungspotenzial Balken CAU Magnetfeld Mikrometer Nature Immunology Sensor

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Autonomes Fahren wirft viele Fragen auf

20.09.2017 | Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Molekulare Kraftmesser

20.09.2017 | Biowissenschaften Chemie

Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen

20.09.2017 | Ökologie Umwelt- Naturschutz

Strom im Flug erzeugen

20.09.2017 | Energie und Elektrotechnik