Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kieler Forschende bauen die kleinsten Maschinen der Welt

22.05.2015

Die DFG stellt Millionenförderung für die Entwicklung neuartiger Medikamente und Materialien an der Christian-Albrechts-Universität zu Kiel (CAU) bereit.

Großer Jubel an der Christian-Albrechts-Universität zu Kiel (CAU): Wie die Deutsche Forschungsgemeinschaft (DFG) heute (Donnerstag, 21. Mai) bekannt gab, unterstützt sie die Forschung an Molekülen, die wie Maschinen funktionieren, erneut mit 8,9 Millionen Euro.


Rainer Herges und Susann Boretius vom Sonderforschungsbereich 677 testen am MRT ein Kontrastmittel, das mit Licht aktiviert werden kann.

AG Herges


Mit Molekülen, die bestimmte Funktionen ausführen, wollen die Forschenden Materialien entwickeln, die in der Medizin zum Einsatz kommen sollen.

Jürgen Haacks, CAU

Die Wissenschaftlerinnen und Wissenschaftler im nördlichsten Bundesland wollen damit in den nächsten vier Jahren eine neue Ingenieurtechnik auf molekularer Ebene entwickeln. Diese ultimative Miniaturisierung soll die Effizienz von Energieumwandlungssystemen, Medikamenten, Diagnosemethoden und Werkstoffen verbessern und auch ganz neue Anwendungsgebiete erschließen.

Mit der Förderung geht der sogenannte Sonderforschungsbereich (SFB) mit der Nummer 677 „Funktion durch Schalten“ in die dritte und letzte Förderphase. Sonderforschungsbereiche werden maximal zwölf Jahre finanziert. In der deutschen Hochschullandschaft sind sie heiß begehrte Forschungseinrichtungen. Insgesamt arbeiten in dem Kieler Forschungsverbund etwa 100 Wissenschaftlerinnen und Wissenschaftler aus der Chemie, Physik, den Materialwissenschaften und der Medizin.

Pionierarbeit auf dem Gebiet der molekularen Maschinen

Dem positiven Bescheid war eine intensive Begutachtung durch DFG-Fachleute vorausgegangen, die alle vier Jahre ansteht. „Meine allerherzlichsten Glückwünsche gehen an die Kolleginnen und Kollegen aus dem SFB 677 – sie haben großartige Arbeit geleistet und die DFG erkennt das an“, sagte CAU-Präsident Professor Lutz Kipp.

„Für das Land Schleswig-Holstein und speziell für die Universität Kiel bedeutet dies, dass mit Bundesmitteln die Forschung gestärkt, die internationale Sichtbarkeit verbessert und zahlreiche Arbeitsplätze für hochqualifizierte Wissenschaftlerinnen und Wissenschaftler geschaffen werden.“ Alle am Projekt Beteiligten hätten exzellente wissenschaftliche Ergebnisse hervorgebracht und so die Bildung des Kieler Forschungsschwerpunkts „Nanowissenschaften und Oberflächenforschung“ maßgeblich befördert.

Von der Entwicklung winziger Maschinen im technischen und medizinischen Bereich versprechen sich die Forschenden ähnlich revolutionierende Leistungssteigerungen wie wir sie in den letzten Jahrzehnten in der Informationstechnologie erlebt haben. Die Grundlagen hierfür müssen aber erst noch geschaffen werden. Fundamentale Beiträge dazu hat der Kieler SFB geliefert, denn gegen Ende der ersten Förderperiode 2011 konnten die Forschenden bereits einen bahnbrechenden Erfolg vorweisen:

Einem Team um Professor Rainer Herges, Sprecher des SFBs, war es erstmals gelungen, den magnetischen Zustand eines einzelnen Moleküls bei Raumtemperatur gezielt zu steuern – mit Licht verschiedener Wellenlängen. Der winzige Schalter erregte internationales Aufsehen und wird für den Einsatz in minimal invasiven Schlaganfall- und Herzoperationen und der MRT-Diagnostik weiter entwickelt. „Solche Arbeiten sind nur möglich, indem Wissenschaftlerinnen und Wissenschaftler verschiedener Fachbereiche zusammenarbeiten“, sagt Chemiker Herges.

Kieler Sonderforschungsbereich international führend in den Nanowissenschaften

Das Anwendungsspektrum für molekulare Schalter wächst geradezu explosionsartig und revolutioniert ganze Wissenschaftsbereiche, wie zum Beispiel die Hirnforschung. Doch keine andere Arbeitsgruppe konnte bisher Moleküle herstellen, die sich effizienter zwischen zwei Zuständen hin und her schalten lassen, die temperaturbeständiger und stabiler sind als die aus den Kieler Laboren.

Herges Kolleginnen und Kollegen konnten kreativ werden und fanden bis heute viele Einsatzmöglichkeiten für die Moleküle: in neuen Materialien für die Solartechnik, in potenziellen neuen Medikamenten, als schonendes Kontrastmittel für die medizinische Diagnostik. Die Arbeit daran, genau wie die Forschung an Materialien, die ihre Ermüdung durch Farbwechsel selbst anzeigen können, geht aktuell weiter.

Über 160 wissenschaftliche Artikel veröffentlichten die Projektmitarbeiterinnen und -mitarbeiter in den letzten vier Jahren. Zwei Firmen wurden erfolgreich aus dem Sonderforschungsbereich ausgegründet – eine entwickelt Lichttechnik für wissenschaftliche Experimente und industrielle Anwendungen. Die andere stellt Materialien mit speziellen Funktionen her. Außerdem wurden 28 Doktorarbeiten abgeschlossen.

Für die letzte Förderperiode, die nun beginnt, wollen die Forschenden sich weiter auf neue Anwendungen konzentrieren: „Wir werden stärker mit Materialwissenschaftlern und Medizinern zusammenarbeiten“, sagt Professor Rainer Herges. Ein Ziel sei es, Wirkstoffe herzustellen, die sich erst am Krankheitsherd einschalten und damit Nebenwirkungen im gesunden Gewebe vermeiden und molekulare Maschinen, die Lichtenergie direkt in chemische (also speicherbare) Energie umwandeln.

Weitere Informationen:

http://www.sfb677.uni-kiel.de - Weitere Informationen
http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2015-176-sfb-677-nano - Die Pressemeldung auf der Seite der CAU

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen