Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kieler Forschende bauen die kleinsten Maschinen der Welt

22.05.2015

Die DFG stellt Millionenförderung für die Entwicklung neuartiger Medikamente und Materialien an der Christian-Albrechts-Universität zu Kiel (CAU) bereit.

Großer Jubel an der Christian-Albrechts-Universität zu Kiel (CAU): Wie die Deutsche Forschungsgemeinschaft (DFG) heute (Donnerstag, 21. Mai) bekannt gab, unterstützt sie die Forschung an Molekülen, die wie Maschinen funktionieren, erneut mit 8,9 Millionen Euro.


Rainer Herges und Susann Boretius vom Sonderforschungsbereich 677 testen am MRT ein Kontrastmittel, das mit Licht aktiviert werden kann.

AG Herges


Mit Molekülen, die bestimmte Funktionen ausführen, wollen die Forschenden Materialien entwickeln, die in der Medizin zum Einsatz kommen sollen.

Jürgen Haacks, CAU

Die Wissenschaftlerinnen und Wissenschaftler im nördlichsten Bundesland wollen damit in den nächsten vier Jahren eine neue Ingenieurtechnik auf molekularer Ebene entwickeln. Diese ultimative Miniaturisierung soll die Effizienz von Energieumwandlungssystemen, Medikamenten, Diagnosemethoden und Werkstoffen verbessern und auch ganz neue Anwendungsgebiete erschließen.

Mit der Förderung geht der sogenannte Sonderforschungsbereich (SFB) mit der Nummer 677 „Funktion durch Schalten“ in die dritte und letzte Förderphase. Sonderforschungsbereiche werden maximal zwölf Jahre finanziert. In der deutschen Hochschullandschaft sind sie heiß begehrte Forschungseinrichtungen. Insgesamt arbeiten in dem Kieler Forschungsverbund etwa 100 Wissenschaftlerinnen und Wissenschaftler aus der Chemie, Physik, den Materialwissenschaften und der Medizin.

Pionierarbeit auf dem Gebiet der molekularen Maschinen

Dem positiven Bescheid war eine intensive Begutachtung durch DFG-Fachleute vorausgegangen, die alle vier Jahre ansteht. „Meine allerherzlichsten Glückwünsche gehen an die Kolleginnen und Kollegen aus dem SFB 677 – sie haben großartige Arbeit geleistet und die DFG erkennt das an“, sagte CAU-Präsident Professor Lutz Kipp.

„Für das Land Schleswig-Holstein und speziell für die Universität Kiel bedeutet dies, dass mit Bundesmitteln die Forschung gestärkt, die internationale Sichtbarkeit verbessert und zahlreiche Arbeitsplätze für hochqualifizierte Wissenschaftlerinnen und Wissenschaftler geschaffen werden.“ Alle am Projekt Beteiligten hätten exzellente wissenschaftliche Ergebnisse hervorgebracht und so die Bildung des Kieler Forschungsschwerpunkts „Nanowissenschaften und Oberflächenforschung“ maßgeblich befördert.

Von der Entwicklung winziger Maschinen im technischen und medizinischen Bereich versprechen sich die Forschenden ähnlich revolutionierende Leistungssteigerungen wie wir sie in den letzten Jahrzehnten in der Informationstechnologie erlebt haben. Die Grundlagen hierfür müssen aber erst noch geschaffen werden. Fundamentale Beiträge dazu hat der Kieler SFB geliefert, denn gegen Ende der ersten Förderperiode 2011 konnten die Forschenden bereits einen bahnbrechenden Erfolg vorweisen:

Einem Team um Professor Rainer Herges, Sprecher des SFBs, war es erstmals gelungen, den magnetischen Zustand eines einzelnen Moleküls bei Raumtemperatur gezielt zu steuern – mit Licht verschiedener Wellenlängen. Der winzige Schalter erregte internationales Aufsehen und wird für den Einsatz in minimal invasiven Schlaganfall- und Herzoperationen und der MRT-Diagnostik weiter entwickelt. „Solche Arbeiten sind nur möglich, indem Wissenschaftlerinnen und Wissenschaftler verschiedener Fachbereiche zusammenarbeiten“, sagt Chemiker Herges.

Kieler Sonderforschungsbereich international führend in den Nanowissenschaften

Das Anwendungsspektrum für molekulare Schalter wächst geradezu explosionsartig und revolutioniert ganze Wissenschaftsbereiche, wie zum Beispiel die Hirnforschung. Doch keine andere Arbeitsgruppe konnte bisher Moleküle herstellen, die sich effizienter zwischen zwei Zuständen hin und her schalten lassen, die temperaturbeständiger und stabiler sind als die aus den Kieler Laboren.

Herges Kolleginnen und Kollegen konnten kreativ werden und fanden bis heute viele Einsatzmöglichkeiten für die Moleküle: in neuen Materialien für die Solartechnik, in potenziellen neuen Medikamenten, als schonendes Kontrastmittel für die medizinische Diagnostik. Die Arbeit daran, genau wie die Forschung an Materialien, die ihre Ermüdung durch Farbwechsel selbst anzeigen können, geht aktuell weiter.

Über 160 wissenschaftliche Artikel veröffentlichten die Projektmitarbeiterinnen und -mitarbeiter in den letzten vier Jahren. Zwei Firmen wurden erfolgreich aus dem Sonderforschungsbereich ausgegründet – eine entwickelt Lichttechnik für wissenschaftliche Experimente und industrielle Anwendungen. Die andere stellt Materialien mit speziellen Funktionen her. Außerdem wurden 28 Doktorarbeiten abgeschlossen.

Für die letzte Förderperiode, die nun beginnt, wollen die Forschenden sich weiter auf neue Anwendungen konzentrieren: „Wir werden stärker mit Materialwissenschaftlern und Medizinern zusammenarbeiten“, sagt Professor Rainer Herges. Ein Ziel sei es, Wirkstoffe herzustellen, die sich erst am Krankheitsherd einschalten und damit Nebenwirkungen im gesunden Gewebe vermeiden und molekulare Maschinen, die Lichtenergie direkt in chemische (also speicherbare) Energie umwandeln.

Weitere Informationen:

http://www.sfb677.uni-kiel.de - Weitere Informationen
http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2015-176-sfb-677-nano - Die Pressemeldung auf der Seite der CAU

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

nachricht Stärkstes Biomaterial der Welt schlägt Stahl und Spinnenseide
17.05.2018 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics