Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keramische Partikel liefern digitale Röntgenplatten „aus der Sprühdose“

10.11.2015

Forscher vom INM in Saarbrücken haben Materialien untersucht, mit denen zukünftig Röntgendetektoren kostengünstig im großen Maßstab und mit hoher Bildauflösung hergestellt werden können.

Digitale Röntgensysteme sind aus der Gesundheitsversorgung nicht mehr wegzudenken. Der frühere Röntgenfilm wird darin durch einen sogenannten Röntgendetektor ersetzt. Heutige Detektoren sind teuer, empfindlich und in der Auflösung begrenzt.


Die elektronenmikroskopische Aufnahme zeigt die Verteilung der keramischen Partikel im Kunststoff in den gesprühten Röntgendetektoren.

Quelle: Copyright INM; frei in Zusammenhang mit dieser Meldung.

Nun ist es Wissenschaftlern im Kooperationsprojekt HOP-X gelungen, neue Materialien für Detektoren zu entwickeln: Sie betteten dazu Keramik-Partikel in einen leitfähigen Kunststoff ein. Die Bestandteile dieses „Komposit-Detektors“ lassen sich in Lösungsmittel einrühren und dann wie ein Lack durch Sprühen auftragen. Damit können zukünftig Röntgendetektoren kostengünstig im großen Maßstab und mit hoher Bildauflösung hergestellt werden.

Diese Ergebnisse wurden jüngst in der Zeitschrift Nature Photonics veröffentlicht.

Röntgendetektoren bestehen aus einer Szintillatorschicht und einer Photodiode. Die Szintillatorschicht wandelt Röntgenstrahlung in sichtbares Licht um, welches die Photodiode aufnimmt. Solche Detektoren sind schwer herzustellen und teuer. Ihre Auflösung ist begrenzt, weil sich die aufgefangenen Signale gegenseitig stören können.

Um Röntgendetektoren kostengünstiger herzustellen, beschritten Wissenschaftler der Siemens Healthcare GmbH, des INM –Leibniz-Institut für Neue Materialien, der Universitäten Erlangen und Hamburg und weiterer Partner im Projekt HOP-X einen neuen Weg: Sie verwendeten Materialien, die für flexible Solarzellen entwickelt wurden und passten sie auf Röntgenstrahlung an.

Die Wissenschaftler am INM stellten dazu keramische Partikel her, die im Röntgenlicht aufleuchten. Diese betteten sie in einen leitfähigen Kunststoff ein. Er wandelt das Licht in elektrischen Strom um, der vom Röntgengerät registriert wird. Die Forscher untersuchten außerdem die Strukturen, die aus Partikeln und Kunststoff gebildet werden.

„Wir untersuchten die Proben mit elektronenmikroskopischen Verfahren anhand dünner Schichten, die wir mit Ionenstrahlen aus dem Komposit schnitten“, sagt Tobias Kraus, Leiter des Programmbereichs Strukturbildung am INM.

„Mithilfe dieser Analytik konnten wir zeigen, wie sich die Partikel und der Kunststoff bei verschiedenen Mischverhältnissen anordnen. Dadurch war es unseren Projektpartnern möglich, die Mischverhältnisse für die empfindlichsten Röntgendetektoren abzuleiten.“ Dann seien scharfe Röntgenbilder auch bei geringer Strahlungsdosis möglich.

Die Ergebnisse zeigen, dass Röntgendetektoren aus diesen neuen Materialien die strengen Anforderungen der Medizintechnik erfüllen können. Derzeit arbeiten die Forscher an Prozesstechniken, um größere Detektoren herzustellen.

Hintergrund:
Neben dem INM waren am Projekt HOP-X die Siemens Healthcare GmbH, die Merck KgaA, sowie die CAN GmbH beteiligt. Das im Herbt 2015 beendete, dreijährige Verbundprojekt HOP-X wurde vom Bundesministerium für Bildung und Forschung mit 1,86 Millionen Euro unterstützt.

Originalpublikation:
Patric Büchele, Moses Richter, Sandro F. Tedde, Gebhard J. Matt, Genesis N. Ankah, Rene Fischer, Markus Biele, Wilhelm Metzger, Samuele Lilliu, Oier Bikondoa, J. Emyr Macdonald, Christoph J. Brabec, Tobias Kraus, Uli Lemmer, Oliver Schmidt: „X-ray imaging with scintillator-sensitized hybrid organic photodetectors“; nature photonics, DOI: 10.1038/nphoton.2015.216

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen?

Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 210 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de
http://www.leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung