Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalkschablonen für Wirkstoffvehikel

26.06.2012
Ausgehend von Calciumcarbonat-Kugeln lassen sich Mikrocontainer für medizinische Substanzen gezielt in verschiedenen Größen herstellen

Wirkstoffe schnell und gezielt zu Krankheitsherden zu transportieren könnte schon bald leichter werden. Helmuth Möhwald und seine Kollegen vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm, Potsdam haben eine Technik entwickelt, um auf einfache Weise Container für Wirkstoffe herzustellen, die sich zu einem ausgewählten Ziel im Körper schleusen lassen könnten.

Die Forscher verwenden poröse Calciumcarbonat-Kugeln als Schablonen, um dreidimensionale Hohlkugeln herzustellen. Diese können medizinisch wirksame Substanzen aufnehmen und lassen sich auf ihrer Oberfläche mit Signalmolekülen versehen, anhand derer die Kugeln zu dem kranken Gewebe finden.

Die Chemotherapie ist erfolgreiches Mittel, um Krebs zu bekämpfen, allerdings gibt es dabei ein großes Problem: Die giftigen Substanzen hemmen nicht nur das Wachstum der Tumorzellen, sondern schädigen auch gesundes Gewebe. Vor dieser Situation stehen Ärzte oft, wenn sie Medikamente einsetzen. Mikro- oder Nanokugeln, die Wirkstoffe gezielt in den Körper bringen und erst am Krankheitsherd freisetzen, könnten ihnen aus diesem Dilemma heraus helfen. Die Methode der Forscher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung ermöglicht es, solche Kugeln in beliebigen Größen zu produzieren und mit verschiedenen Funktionen auszustatten.

Die Forscher wählen zunächst die Calciumcarbonat-Schablonen in der Größe aus, die ihre Wirkstoffcontainer am Ende haben sollen. Solche Kalkpartikel können in genau definierten Größen von wenigen Hundert Nanometer bis zu mehreren Mikrometern hergestellt werden. Die Poren der Kalkkugeln füllen sie nun zunächst mit Nanopartikeln und gegebenenfalls mit medizinischen Wirkstoffen. Die Nanopartikel können dabei unterschiedliche Eigenschaften aufweisen. Sie können etwa aus einem Material bestehen, das sich mit Licht oder bestimmten Substanzen zersetzen lässt, und so als Öffner für die Wirkstoffvehikel dienen.

Die gefüllten Kalkkugeln umhüllen die Potsdamer Forscher anschließend mit einem Gespinst aus langen Proteinketten – wahlweise können sie dafür jedoch auch Polymerfäden nutzen. Im nächsten Schritt lösen sie die Kalkschablone mit einer Säure auf. Die Nanopartikel ordnen sich nun von selbst zu einer porösen Kugel an, die von dem Proteingespinst begrenzt wird. „Wir können Substanzen so sehr einfach zu einer multifunktionalen Einheit zusammenführen und ihre chemischen und physikalischen Eigenschaften flexibel auf die Funktion abstimmen“, sagt Möhwald.

Die Proteinhülle begrenzt dabei nicht nur die Hohlkugel, sondern macht sie auch biokompatibel und kann biochemische Signalstoffe tragen, um die Kugel zu ihrem Ziel im Körper zu dirigieren.

Um Mikro- oder Nanocontainer herzustellen, die sich für den Wirkstofftransport eignen könnten, beschreiten Forscher auch andere Wege. So bringen sie beispielsweise im „Bottom-Up“- Verfahren Moleküle und Nanopartikel dazu, sich selbst zu solchen Strukturen zusammen zu lagern. „Unser Verfahren ist allerdings leichter zu kontrollieren, schneller umsetzbar und kosteneffektiver als die bisher entwickelten Techniken“, sagt Helmuth Möhwald.

Der Potsdamer Max-Planck-Forscher und seine Mitarbeiter haben so einen wichtigen Schritt getan, um Wirkstoffe künftig gezielt zu einem Krankheitsherd zu bringen. Die Aufgabe der Grundlagenforschung auf diesem Gebiet sieht Helmuth Möhwald damit erfüllt: „Es bleibt aber offen, ob die Industrie die Methode aufgreift und bis zur Anwendungsreife weiterentwickelt.“

Ansprechpartner

Prof. Dr. Helmuth Möhwald
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Telefon: +49 331 567-9201
Fax: +49 331 567-9202
Email: riedel@­mpikg.mpg.de
Katja Schulze
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Telefon: +49 331 567-9203
Fax: +49 331 567-9202
Email: katja.schulze@­mpikg.mpg.de
Originalveröffentlichung
Yan, Li & Möhwald
Templating Assembly of Multifunctional hybrid Colloidal Spheres
Advanced Materials,Volume 24, Issue 20, page 2662, May 22, 2012, DOI:10.1002/adma.201200408

Prof. Dr. Helmuth Möhwald | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5872592/Wirkstofftransport

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics