Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalkschablonen für Wirkstoffvehikel

26.06.2012
Ausgehend von Calciumcarbonat-Kugeln lassen sich Mikrocontainer für medizinische Substanzen gezielt in verschiedenen Größen herstellen

Wirkstoffe schnell und gezielt zu Krankheitsherden zu transportieren könnte schon bald leichter werden. Helmuth Möhwald und seine Kollegen vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm, Potsdam haben eine Technik entwickelt, um auf einfache Weise Container für Wirkstoffe herzustellen, die sich zu einem ausgewählten Ziel im Körper schleusen lassen könnten.

Die Forscher verwenden poröse Calciumcarbonat-Kugeln als Schablonen, um dreidimensionale Hohlkugeln herzustellen. Diese können medizinisch wirksame Substanzen aufnehmen und lassen sich auf ihrer Oberfläche mit Signalmolekülen versehen, anhand derer die Kugeln zu dem kranken Gewebe finden.

Die Chemotherapie ist erfolgreiches Mittel, um Krebs zu bekämpfen, allerdings gibt es dabei ein großes Problem: Die giftigen Substanzen hemmen nicht nur das Wachstum der Tumorzellen, sondern schädigen auch gesundes Gewebe. Vor dieser Situation stehen Ärzte oft, wenn sie Medikamente einsetzen. Mikro- oder Nanokugeln, die Wirkstoffe gezielt in den Körper bringen und erst am Krankheitsherd freisetzen, könnten ihnen aus diesem Dilemma heraus helfen. Die Methode der Forscher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung ermöglicht es, solche Kugeln in beliebigen Größen zu produzieren und mit verschiedenen Funktionen auszustatten.

Die Forscher wählen zunächst die Calciumcarbonat-Schablonen in der Größe aus, die ihre Wirkstoffcontainer am Ende haben sollen. Solche Kalkpartikel können in genau definierten Größen von wenigen Hundert Nanometer bis zu mehreren Mikrometern hergestellt werden. Die Poren der Kalkkugeln füllen sie nun zunächst mit Nanopartikeln und gegebenenfalls mit medizinischen Wirkstoffen. Die Nanopartikel können dabei unterschiedliche Eigenschaften aufweisen. Sie können etwa aus einem Material bestehen, das sich mit Licht oder bestimmten Substanzen zersetzen lässt, und so als Öffner für die Wirkstoffvehikel dienen.

Die gefüllten Kalkkugeln umhüllen die Potsdamer Forscher anschließend mit einem Gespinst aus langen Proteinketten – wahlweise können sie dafür jedoch auch Polymerfäden nutzen. Im nächsten Schritt lösen sie die Kalkschablone mit einer Säure auf. Die Nanopartikel ordnen sich nun von selbst zu einer porösen Kugel an, die von dem Proteingespinst begrenzt wird. „Wir können Substanzen so sehr einfach zu einer multifunktionalen Einheit zusammenführen und ihre chemischen und physikalischen Eigenschaften flexibel auf die Funktion abstimmen“, sagt Möhwald.

Die Proteinhülle begrenzt dabei nicht nur die Hohlkugel, sondern macht sie auch biokompatibel und kann biochemische Signalstoffe tragen, um die Kugel zu ihrem Ziel im Körper zu dirigieren.

Um Mikro- oder Nanocontainer herzustellen, die sich für den Wirkstofftransport eignen könnten, beschreiten Forscher auch andere Wege. So bringen sie beispielsweise im „Bottom-Up“- Verfahren Moleküle und Nanopartikel dazu, sich selbst zu solchen Strukturen zusammen zu lagern. „Unser Verfahren ist allerdings leichter zu kontrollieren, schneller umsetzbar und kosteneffektiver als die bisher entwickelten Techniken“, sagt Helmuth Möhwald.

Der Potsdamer Max-Planck-Forscher und seine Mitarbeiter haben so einen wichtigen Schritt getan, um Wirkstoffe künftig gezielt zu einem Krankheitsherd zu bringen. Die Aufgabe der Grundlagenforschung auf diesem Gebiet sieht Helmuth Möhwald damit erfüllt: „Es bleibt aber offen, ob die Industrie die Methode aufgreift und bis zur Anwendungsreife weiterentwickelt.“

Ansprechpartner

Prof. Dr. Helmuth Möhwald
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Telefon: +49 331 567-9201
Fax: +49 331 567-9202
Email: riedel@­mpikg.mpg.de
Katja Schulze
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Telefon: +49 331 567-9203
Fax: +49 331 567-9202
Email: katja.schulze@­mpikg.mpg.de
Originalveröffentlichung
Yan, Li & Möhwald
Templating Assembly of Multifunctional hybrid Colloidal Spheres
Advanced Materials,Volume 24, Issue 20, page 2662, May 22, 2012, DOI:10.1002/adma.201200408

Prof. Dr. Helmuth Möhwald | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5872592/Wirkstofftransport

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten