Kalkalgen als Vorbild für zellfreie Biomineralisation

Elektronenmikroskopische Aufnahmen zeigen die außergewöhnliche dreidimensionale Struktur der von der Mikroalge Emiliania huxleyi gebildeten Kalkpartikel. Foto: Frank Friedrich, KIT

Wissenschaftler des Karlsruher Instituts für Technologie (KIT) untersuchen die Grundlagen dieser Biomineralisation. Mögliche Anwendungsfelder für biogene Calcitpartikel sind neuartige Produkte in der Optik, für Farbanstriche und Oberflächenbeschichtungen.

Das Rasterelektronenmikroskop macht die filigranen dreidimensionalen Gebilde sichtbar, die die Alge Emiliania huxleyi aus Calcium und Bicarbonat bildet. Ioanna Hariskos, Doktorandin am KIT-Institut für Bio- und Lebensmitteltechnik, Bereich Bioverfahrenstechnik, vergleicht die außergewöhnliche Struktur der Calcitscheibchen mit flachen, feinen Waschbecken-Sieben, die durch einen mittleren Tunnel verbunden sind.

„Diese komplizierte unregelmäßige Struktur der Coccolithen kann bislang nur die Natur produzieren, sie lässt sich weder durch das Mahlen von Kalkstein noch durch das Ausfällen von Kalkmilch erreichen“, sagt Hariskos. Die Biotechnologin forscht am KIT im Zuge des interdisziplinären Kooperationsprojekts „Zellfreie Biomineralisation am Beispiel von Calciumcarbonat: Ein Weg zur in-vitro Synthese von hochstrukturierten Komposit-Materialien (ZeBiCa²)“.

Ziel ist es, die Coccolithenbildung bioverfahrenstechnisch nach dem Vorbild der Kalkalgen, aber ohne Lebewesen nachzubilden. Im Fokus stehen insbesondere mögliche industrielle Anwendungen: Die Mikrostruktur der Oberfläche sowie besondere chemische und physikalische Eigenschaften der Kalkpartikel bergen Potenzial für die Verwendung in innovativen Produkten. „Die chemische Komposition der Coccolithen ist vermutlich beinflussbar, was sich gezielt für die resultierenden mechanischen Eigenschaften nutzen ließe“, so die Wissenschaftlerin.

Denkbar sei, die Kalkpartikel als neuartige Farbträger zu verwenden. Coccolithen könnten Papier besondere Farb- und Glanzeigenschaften verleihen oder in Schleifpapieren zum Einsatz kommen. Die Doppelbrechung von Calcit – die Eigenschaft Licht in zwei Strahlenbündel aufzuspalten – lasse auch an eine Anwendung in der Optik denken, so Hariskos. „Wenn wir die Grundlagen des Bioprozesses verstehen, durch den Coccolithen gebildet werden, kann es uns gelingen, weitere Materialien, Strukturen und Eigenschaften herzustellen“, erklärt die Biotechnologin.

Hariskos hat mit einem kleinen Team von Studierenden ein Kultivierungsverfahren entwickelt, mit dem sich Coccolithen in großer Menge herstellen lassen. Sie züchtet die Kalkalge Emiliania huxleyi, ein einzelliges Phytoplankton, im Bioreaktor mit modifiziertem künstlichem Meerwasser. In der Natur finden sich 1.000 bis maximal 100.000 Zellen der mikroskopisch kleinen Kalkbildner pro Milliliter Meerwasser.

„Im Labor ist es uns gelungen, 50 bis 100 Millionen Zellen pro Milliliter zu züchten, das ist eine sensationell hohe Ausbeute“, sagt Hariskos. „Wir können den Algen eine bessere Umgebung anbieten als das Meer“, erklärt die Biotechnologin. Neben der kontrollierten Nährstoffzufuhr spielt Licht eine wesentliche Rolle. „Im Bioreaktor können wir den Photosynthese betreibenden Algen 24 Stunden Licht anbieten und die Lichtintensität der jeweiligen Kulturdichte anpassen“, so Hariskos. Dabei kommt auch eine am KIT entwickelte Leuchtdioden-Ummantelung zum Einsatz.

Für seine Forschung in dem bis 2016 laufende Projekt ZeBiCa² wird das Institut für Bio- und Lebensmitteltechnik des KIT vom Bundesministerium für Bildung und Forschung (BMBF) mit insgesamt 410.000 Euro über drei Jahre gefördert.

Neben dem Institut für Bio- und Lebensmitteltechnik sind an dem Verbundprojekt ZeBiCa² das Institut für funktionale Grenzflächen des KIT sowie das Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, das Centrum für Biotechnologie der Universität Bielefeld und das Institut für Systemdynamik der Universität Stuttgart beteiligt. Industriepartner ist das Unternehmen Schaefer Kalk im rheinland-pfälzischen Diez.

Weiterer Kontakt: Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-43658, E-Mail: margarete.lehne@kit.edu

Das Karlsruher Institut für Technologie (KIT) vereint als selbstständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemein-schaft. Seine drei strategischen Felder Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: www.kit.edu

Das Foto steht in druckfähiger Qualität auf www.kit.edu zum Download bereit und kann angefordert werden unter: presse@kit.edu oder +49 721 608-47414. Die Verwendung des Bildes ist ausschließlich in dem oben genannten Zusammenhang gestattet.

http://www.kit.edu/kit/pi_2015_16452.php

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer