Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Jagd nach den Elektronenlöchern: Molekularer Blick auf die solare Wasserspaltung

30.10.2012
Wasserstoff aus Sonnenlicht ist seit langem der Heilige Gral der nachhaltigen Energieversorgung.

Eisenoxid ist ein viel versprechendes Elektrodenmaterial für die photoelektrochemische Wasserspaltung – nicht zuletzt, weil es billig, stabil, umweltfreundlich und in grossen Mengen verfügbar ist.


Hämatit
(Bildquelle: iStock)

Einem internationalen Forscherteam unter Leitung der Empa ist es nun gelungen, die molekularen Strukturänderungen einer Eisenoxidelektrode während der Wasserspaltung zu beobachten. Damit eröffnet sich die Möglichkeit zur günstigen Wasserstoffproduktion aus Sonnenenergie.

Hämatit, die mineralische Form von Eisenoxid (oder, banal gesagt, Rost), ist ein viel versprechendes Anodenmaterial für photoelektrochemische Zellen (PEC), weil sich mit ihm Sonnenlicht in einem breiten Spektralbereich einfangen lässt. Obwohl Hämatit theoretisch bis zu 15 Prozent der Sonnenenergie in Wasserstoff umwandeln könnte, ist die tatsächliche Effizienz deutlich geringer als die anderer Metalloxide. Das liegt an der molekularen Struktur des Hämatits, bei der Elektronenlöcher im angeregten Zustand nur für extrem kurze Zeit existieren.

Hilfreiche Löcher im Hämatit

Elektronen sind (negative) Ladungsträger, sie spielen diese Rolle allerdings nicht alleine. Wenn ein Elektron seinen Platz in der Kristallstruktur eines Halbleiters verlässt, hinterlässt es ein Loch, das sich quasi wie ein positiver Ladungsträger verhalten kann – vorausgesetzt, Elektron und Loch bleiben voneinander getrennt und verbinden sich nicht erneut. In der modernen Halbleiterelektronik sind Löcher wichtige Ladungsträger, ebenso wie in Batterien, Kondensatoren, Brennstoffzellen, Solarzellen und PEC. Sonnenlicht erzeugt in PEC-Elektroden permanent Paare aus Elektronen und Löchern, die an die Oberfläche diffundieren, dort Wasser spalten und Wasserstoff und Sauerstoff erzeugen. Aufgrund der molekularen Struktur von Hämatit geht jedoch ein grosser Teil der Paare verloren, bevor er an der Oberfläche Wasser spalten kann.

Daher ist es wichtig, genauere Kenntnisse über den Zustand der Elektronenlöcher an der Oberfläche des Hämatits zu gewinnen. Bereits früher wurde vermutet, dass Hämatit zwei verschiedene Arten von Löchern mit unterschiedlichem Potenzial für Wasserspaltung bildet. Die Existenz der verschiedenen Typen von Löchern mit unterschiedlicher Reaktivität für Wasseroxidation hat weit reichende Auswirkungen auf die photoelektrische Leistungsfähigkeit von Hämatit. Allerdings ist es schwierig, diese Löcher zu detektieren, unter anderem, weil sie extrem kurzlebig sind.

Nicht alle Löcher sind gleich

In ihrer jüngst im «Journal of Physical Chemistry C» veröffentlichten Studie untersuchten die Empa-Wissenschaftler Artur Braun und Debajeet Bora sowie ihre Kollegen von der EPF Lausanne, der Universität Basel, aus China und den Vereinigten Staaten die photoelektrisch generierten Löcher in einer speziell konstruierten photoelektrochemischen Zelle während des Betriebs. Die Forscher zeichneten Absorptionsspektren von weichem Röntgenlicht auf, während die Zelle unter simuliertem Sonnenlicht oder im Dunkeln in Betrieb war und identifizierten zwei neue Spektralsignaturen, die von zwei unterschiedlichen Lochübergängen stammen.

Laut Braun ist dies das erste Mal, dass die Elektronenstruktur einer PEC-Photoanode während einer Wasserspaltung analysiert wurde. «Die Vorbereitung für dieses äusserst komplizierte Experiment hat drei Jahre in Anspruch genommen», sagt Braun. «Schliesslich funktioniert Röntgenspektroskopie nur im Ultrahochvakuum – Photoelektrochemie hingegen funktioniert nur in Flüssigkeiten. Eine Kombination von beidem war allein aus technischer Sicht eine grosse Leistung. Dennoch würde ich sagen, dass wir grosses Glück hatten, die beiden Elektronenlöcher in einer funktionierenden PEC zu entdecken.»

Das bahnbrechende Experiment des Teams bewies die Bildung zweier verschiedener Typen von Elektronenlöchern an der Berührungsfläche von Halbleiter und Flüssigkeit – unter genau den Bedingungen, unter denen der Photostrom entsteht. Die quantitative Analyse der Spektralsignatur zeigte, dass beide Typen, im Unterschied zu früheren Spekulationen, zu dem entstehenden Photostrom beitragen. «Das ist ein Meilenstein beim Verständnis der solaren Wasserspaltung und eine ermutigende Neuigkeit für Wissenschaftler weltweit, die daran arbeiten, Hämatit für PEC-Photoanoden zu optimieren», sagt Braun.

Literaturhinweis
A Braun, K Sivula, DK Bora, J Zhu, L Zhang, M Grätzel, J Guo, EC Constable; Direct Observation of Two Electron Holes in a Hematite Photo-Anode during Photoelectrochemical Water Splitting; J Phys Chem C 116, 16870 (2012)
Weitere Informationen
Dr. Artur Braun, Hochleistungskeramik, Tel. +41 58 765 48 50, artur.braun@empa.ch

Sabine Voser | EMPA
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie