Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligentes Material am Haken

28.06.2011
Nationales Forschungsprogramm «Intelligente Materialien» (NFP 62)

Im Rahmen des Nationalen Forschungsprogramms «Intelligente Materialien» (NFP 62) haben sich die Forscher des Adolphe Merkle Instituts (Freiburg) bei der Entwicklung von Polymeren mit Formgedächtnis am Beispiel der Seegurke inspiriert. Eine erste Anwendungsmöglichkeit könnte ein künstlicher Köder zum Angeln sein. Die Freiburger Wissenschaftler fassen aber auch schon andere – hochtechnologische – Anwendungen in der Medizin ins Auge.


Wenn das Polymer ins Wasser getaucht wird, lösen sich die chemischen Bindungen zwischen den Nanofibern aus kristalliner Zellulose und das Polymer findet zu seiner ursprünglichen Geometrie zurück. © Institut Adolphe Merkle/SNF

Der künstliche Wurm ist völlig reglos, wenn Johan Foster, ein Forschungsgruppenleiter am Adolphe Merkle Institut (AMI), den Köder auf die Spitze des Angelhakens aufzieht. Kaum im Wasser beginnt er jedoch, sich hin und her zu winden und - zumindest für den menschlichen Betrachter - das Verhalten seines natürlichen Vorbilds zu imitieren. Unter dem Einfluss der Flüssigkeit nimmt dieses Stück Polymer mit Formgedächtnis seine ursprüngliche Geometrie wieder ein.

Wirbellos, aber intelligent
Auf dem Weg zu diesem Ergebnis liessen sich die Forscher des AMI um Christoph Weder und Johan Foster von der Seegurke inspirieren, einem im Meer lebenden Organismus, dessen eigentlich weiche Haut sich bei Berührung unmittelbar versteift, da sie zahlreiche Kollagenfasern enthält. Ist das Tier ruhig, so sind diese Fasern voneinander unabhängig. Sobald die Seegurke aber berührt wird, schüttet sie Peptide aus, die es diesen Fasern ermöglichen, sich miteinander zu verbinden und eine Art Gerüst zu bilden, das die Haut versteift. Selbstverständlich ist dieser Mechanismus umkehrbar, was die Haut der Seegurke zu einem natürlichen intelligenten Material macht.

Im Fall des künstlichen Wurms haben die Wissenschaftler des AMI kristalline Zellulose-Nanofasern in ein Polymer eingebettet. Diese Nanofasern sind natürlichen Ursprungs: Gewonnen werden sie etwa beim Auflösen von Baumwolle oder Papier. Auch wenn sie eine einfache Struktur aufweisen, sind ihre mechanischen Eigenschaften doch vergleichbar mit denen von Kohlenstoff-Nanoröhrchen. Wenn man sie in ein Polymer einbettet, verbinden sich diese Fasern über sogenannte Wasserstoffbrücken miteinander. Je nach Grösse und Konzentration der Fasern kann das Polymer dann so steif wie eine CD-Hülle werden. Durch Zugabe von Wasser jedoch werden diese Wasserstoffbrücken geschwächt: Das Polymer wird so weich wie Kautschuk. Auch hier ist der Mechanismus nach Belieben umkehrbar, was dieses Verbundmaterial zu einem intelligenten Material macht.

Formgedächtnis
Um einen künstlichen Wurm herzustellen, reicht es entsprechend, ein Stück dieses Materials zu befeuchten, es in die Länge zu ziehen, in alle Richtungen zu verdrehen und es anschliessend zu trocknen. Beim Trocknen gewinnen die Wasserstoffbrücken zwischen den Fasern wieder die Oberhand und lassen das Polymer in seinem verformten Zustand erstarren. Wirft man es erneut ins Wasser, werden die Verbindungen geschwächt, und es nimmt aufgrund der Elastizität wieder seine Ursprungsform an.

Auch wenn Köder ein erstes, einfach zu realisierendes Produkt wären, so wurden die künstlichen Würmer primär hergestellt, um die Eigenschaften und das Potential von Materialien mit Formgedächtnis zu demonstrieren. Christoph Weder und Johan Foster stellen sich für ihre Materialien auch hochtechnologische Einsatzmöglichkeiten vor. So könnten diese beispielsweise als Substrat für Elektroden dienen, die ins Gehirn implantiert werden. Solche Elektroden müssen möglichst steif sein, um eine äusserst präzise Platzierung sicherzustellen. Diese Steifigkeit beschleunigt jedoch die Abstossung durch den Organismus. Da die Gehirnflüssigkeit grösstenteils aus Wasser besteht, könnten die durch das AMI entwickelten Materialien beide Anforderungen erfüllen: Steifigkeit bei der Implantation und anschliessende Weichheit, um die Abstossung hinauszuzögern.

Nationales Forschungsprogramm «Intelligente Materialien» (NFP 62)
Beim NFP 62 handelt es sich um ein Kooperationsprogramm zwischen dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (SNF) und der Förderagentur für Innovation KTI. Ziel ist dabei nicht nur die Förderung wissenschaftlicher Exzellenz, sondern auch eine erfolgreiche industrielle Nutzung der intelligenten Materialien und ihrer Anwendungen.

Das NFP 62 zielt auf die Bündelung der an verschiedenen Forschungsstätten in der Schweiz vorhandenen Kompetenzen und Ressourcen. Diese Forschung liefert die nötigen Technologien für die Entwicklung intelligenter Materialen und für die Anwendung intelligenter Systeme und Strukturen in Bereichen mit strategischer Bedeutung für die Schweizer Industrie.

Das NFP 62 umfasst 21 Projekte, verfügt über ein Budget von 11 Millionen Franken und endet im Jahr 2015.

Kontakt:
Prof. Dr. Christoph Weder
Direktor des Adolphe Merkle Instituts
Polymerchemie und Materialien
E-Mail: christoph.weder@unifr.ch
Tel.: +41 26 300 94 65
Dr. E. Johan Foster
Polymerchemie und Materialien
E-Mail: johan.foster@unifr.ch
Tel.: +41 26 300 92 81
Institut Adolphe Merkle
Université de Fribourg
Rte de l'Ancienne Papeterie
CP 209
CH-1723 Marly 1
www.am-institute.ch

Presse- und Informationsdienst | idw
Weitere Informationen:
http://www.snf.ch
http://www.nfp62.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Biotinte für den Druck gewebeähnlicher Strukturen
19.10.2017 | Forschungszentrum Jülich, Jülich Centre for Neutron Science

nachricht Was winzige Strukturen über Materialeigenschaften verraten
19.10.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie