Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligente Kunststoffschichten vertreiben Bakterien

15.03.2012
Die Wechselwirkungen zu kontrollieren, die sich zwischen Metallen einerseits und lebenden Zellen oder Bakterien andererseits abspielen, ist bis heute eine Herausforderung auf verschiedensten Technikfeldern.

Ein Forschungsteam um Dr. Daria Andreeva-Bäumler, Prof. Dr. Andreas Fery und Prof. Dr. Axel Müller (Universität Bayreuth) stellt jetzt in der Zeitschrift "Advanced Materials" einen neuartigen Lösungsansatz vor. Metalle werden dabei mit Ultraschall behandelt und erhalten anschließend eine intelligente Kunststoffschicht, die eine maßgeschneiderte Reaktionsfähigkeit besitzt. Die Beschichtung verhindert, dass sich spezielle Bakterien oder Zellen auf der Oberfläche festsetzen können.


Rasterelektronenmikroskopische Aufnahme (Seitenansicht) einer Aluminiumschicht (weiss-grauer-Bereich rechts), nachdem sie in wässriger Lösung durch eine Ultraschallbehandlung porös gemacht worden ist. So kann das Aluminium nun mit einer intelligenten polymeren Beschichtung überzogen werden. Im linken Bereich der Aufnahme ist ein Glassubstrat zu sehen, auf dem das Aluminium aufliegt.
Aufnahme: Lehrstuhl Physikalische Chemie II, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Zusammen mit Forschern der Universität Bayreuth waren auch Wissenschaftler am Max-Planck-Institut für Kolloide und Grenzflächen in Golm an dieser innovativen Entwicklung beteiligt. Deren Anwendungspotenziale sind vielversprechend. In der Medizin beispielsweise werden häufig Implantate aus Metall bevorzugt. Diese sollen von den körpereigenen Gewebezellen akzeptiert werden, doch Bakterien dürfen sich darin nicht festsetzen. Im Schiffbau wiederum würde man gern vermeiden, dass Bakterien und Algen sich unter Wasser in großer Zahl auf dem Schiffsrumpf ansiedeln. Denn ein solcher Biofilm erhöht den Strömungswiderstand und lässt die Transportkosten steigen.

Die polymeren Beschichtungen, die in den Bayreuther Laboratorien bereits erfolgreich erprobt wurden, bestehen aus speziellen kugelförmigen Strukturen, sog. Mizellen, die auf den Säuregrad der Umgebung reagieren. Lassen sich nun bestimmte Bakterien auf den Oberflächen nieder, so ändert sich der Säuregrad infolge des bakteriellen Stoffwechsels. Die Mizellen quellen auf und stoßen so die Bakterien ab. Das Besondere an diesen Beschichtungen ist also die Tatsache, dass die Bakterien selbst die Energie für den Abwehrmechanismus (das Aufquellen der Schicht) liefern.

"Beim Design einer derart intelligenten Kunststoffschicht ist zu berücksichtigen, dass verschiedene Bakterienarten – und ebenso verschiedene Arten von lebenden Zellen – den Säuregrad ihrer Umgebung unterschiedlich beeinflussen", erklärt Prof. Dr. Andreas Fery. "Aufgrund unserer langjährigen Forschungserfahrungen haben wir in Bayreuth das erforderliche Know-how zum Design von Beschichtungen, die sich zielgenau gegen spezielle Bakterienarten richten. Wir können metallische Oberflächen so beschichten, dass sie auf genau diejenigen Umgebungsänderungen reagieren, die für bestimmte Bakterienarten typisch sind."

Damit eine derart intelligente Kunststoffschicht auf einer metallischen Oberfläche aufgetragen werden kann, muss diese zuvor aktiviert werden. Dies geschieht mithilfe eines hochleistungsfähigen und kostengünstigen Ultraschall-Verfahrens, das in Bayreuth von Dr. Daria Andreeva-Bäumler zusammen mit internationalen Partnern entwickelt wurde. Dabei werden Metalle in einer wässrigen Lösung mit Ultraschall so bearbeitet, dass Hohlräume von wenigen Nanometern entstehen – und zwar in präzise definierten Abständen. Erst diese hochpräzise Nanostruktuierung von Metallen macht es möglich, deren Wechselwirkungen mit Bakterien oder lebenden Zellen mithilfe intelligenter Kunststoffschichten zu steuern.

Veröffentlichung:

Julia Gensel, Tina Borke, Nicolas Pazos Pérez, Andreas Fery, Daria V. Andreeva, Eva Betthausen, Axel H. E. Müller, Helmuth Möhwald, and Ekaterina V. Skorb,
Cavitation Engineered 3D Sponge Networks and Their Application in Active Surface Construction,
in: Advanced Materials, 2012, 24, pp. 985-989
DOI: 10.1002/adma.201103786
Zur Nanostrukturierung von Metallen mit Ultraschall siehe auch:
http://www.uni-bayreuth.de/blick-in-die-forschung/05-2011.pdf
Ansprechpartner für weitere Informationen:
Prof. Dr. Andreas Fery
Lehrstuhl Physikalische Chemie II
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55-2753
E-Mail: andreas.fery@uni-bayreuth.de
Dr. Daria Andreeva-Bäumler
Lehrstuhl Physikalische Chemie II
Universität Bayreuth
95440 Bayreuth
Tel.: +49 (0) 921 / 55-2750
E-Mail: daria.andreeva@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/blick-in-die-forschung/05-2011.pdf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie