Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligente Fassaden, die Strom, Wärme und Algen erzeugen

22.12.2014

Materialforscher der Universität Jena koordiniert neues EU-Projekt zu intelligenten Fassaden

Fenster, die auf Knopfdruck ihre Lichtdurchlässigkeit ändern, Fassaden, deren Farbe sich je nach Sonneneinstrahlung steuern lässt, Fassaden- oder Fensterbauteile, in denen transparente photovoltaische Module integriert sind oder Mikroalgen gezüchtet werden, um mit eigenem Biokraftstoff das Haus zu heizen: So oder so ähnlich könnten die Gebäude der Zukunft aussehen.


Intelligente Gebäudefassaden, die selbstständig auf ihre Umwelt reagieren und die Energieeffizienz von Gebäuden verbessern, sind das Ziel des Projekts, das von Forschern der Uni Jena koordiniert wird.

Foto: Jan-Peter Kasper/FSU

„Viele dieser Ideen sind heute sicher denkbar, vor allem im Bereich der intelligenten Gebäudefassaden, die selbstständig auf ihre Umwelt reagieren und so die Energieeffizienz von Gebäuden verbessern“, sagt Prof. Dr.-Ing. Lothar Wondraczek von der Friedrich-Schiller-Universität. „Doch nur wenige sind derzeit realisiert, da es an entsprechenden Materialien und Herstellungsprozessen fehlt“, so der Lehrstuhlinhaber für Glaschemie.

Dass sich das ändert, ist das Ziel eines neuen internationalen Forschungsvorhabens, das von dem Jenaer Materialforscher Lothar Wondraczek koordiniert wird. Die Wissenschaftler wollen im Projekt „Large-Area Fluidic Windows – LaWin“ funktionale Fassaden, Fassaden- und Fensterbauteile sowie entsprechende Herstellungsverfahren entwickeln und zur Marktreife bringen.

„Das erfordert ein enges Zusammenspiel von Architekten, Materialforschern und Ingenieuren. Deshalb ist auch das Konsortium entsprechend interdisziplinär aufgestellt“, betont Wondraczek. Insgesamt 14 Partner sind an „LaWin“ beteiligt: Neben der Universität Jena sind das die Uni Weimar, die Berliner Beuth Hochschule für Technik sowie Industrieunternehmen aus Deutschland, Österreich, Belgien und der Tschechischen Republik. Die Europäische Kommission fördert das Vorhaben in den kommenden drei Jahren mit sechs Millionen Euro im europäischen Rahmenprogramm Horizon 2020. Hinzu kommen 2,1 Millionen Euro der beteiligten Industrieunternehmen.

In Jena ist das Projekt am Zentrum für Energie und Umweltchemie (CEEC) angesiedelt. Konkret arbeiten Prof. Wondraczek und sein Team an neuartigen Glasmodulen für Gebäudefassaden, die aus zwei miteinander verbundenen Glasschichten bestehen: einer Schicht mit einem sehr dünnen und hochfesten Deckglas und einer Schicht mit einem strukturierten Glas. „Dieses strukturierte Glas enthält Mikrokanäle, durch die eine funktionale Flüssigkeit zirkuliert, welche es beispielsweise ermöglicht, den Lichteinfall automatisch anzupassen oder die Außenwärme zu speichern, um dann mithilfe einer Wärmepumpe Strom zu erzeugen“, erklärt Wondraczek. Die Wissenschaftler werden detaillierte Tests solcher Fassaden- und Fenstermodule durchführen, um die Materialien und ihr Zusammenspiel optimieren zu können.

Doch LaWin geht noch einen Schritt weiter – nämlich aus dem Labor heraus: So planen die Wissenschaftler – basierend auf den Ergebnissen der Laboruntersuchungen – die innovativen Fassaden an ausgewählten Referenzgebäuden anzubringen und damit auch unter „echten“ Bedingungen zu testen. „Die Großflächigkeit ist die Herausforderung“, betont Wondraczek. Denn bisher gebe es noch kein Verfahren zur Herstellung von derartigen großflächigen Gläsern mit integrierten Mikrostrukturen. Zudem müssen die neuen Glasfassaden sich in herkömmliche Fenster- und Fassadensysteme integrieren lassen und letztlich auch rentabel sein, so Wondraczek.

Immerhin ein Drittel aller Treibhausgasemissionen in der Europäischen Union und 40 Prozent des Energieverbrauchs sind auf das Heizen, Kühlen, Lüften und Beleuchten von Gebäuden zurückzuführen. Um den Ausstoß von Kohlendioxid erheblich zu reduzieren und die Klimaziele zu erreichen, sind für Lothar Wondraczek Investitionen in energieeffiziente Gebäude einer der wichtigsten Hebel. „Denn Energie sparen und effizient nutzen ist immer besser, als diese zu erzeugen, egal mit welcher Methode“, betont der Jenaer Materialforscher.

Das Themenfeld „energieeffiziente Gebäude“ ist daher eines von acht strategischen Schlüsselfeldern, auf denen die europäische Kommission in ihrer Public-Private-Partnership (PPP)-Initiative besondere Chancen für eine nachhaltige Stärkung der europäischen Innovations- und Industrieführerschaft im globalen Wettbewerb sieht.

Kontakt:
Prof. Dr.-Ing. Lothar Wondraczek
Otto-Schott-Institut für Materialforschung der Friedrich-Schiller-Universität Jena
Fraunhoferstr. 6, 07743 Jena
Tel.: 03641 / 948504
E-Mail: lothar.wondraczek[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Claudia Hilbert | Friedrich-Schiller-Universität Jena

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten