Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Inspiriert von Tiefseeschwämmen: "Elastischer Kalk" aus dem Labor

15.03.2013
Wissenschaftler erzeugen ein flexibles Mineral, indem sie das Skelett von natürlichen Schwämmen nachbilden

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) und des Max-Planck-Instituts für Polymerforschung haben ein neues Hybridmaterial geschaffen, das einen Mineralanteil von fast 90 Prozent besitzt, aber dennoch extrem flexibel ist.


Die synthetischen Spicula sind auch deshalb so flexibel, weil die Calcit-Ziegel so klein sind (im Nanometerbereich). Quelle: AG Tremel, JGU

Sie haben dazu das Skelett von Tiefseeschwämmen als Vorbild genommen und die Schwammnadeln aus dem Mineral Calciumcarbonat und einem Protein des Schwamms nachgebaut. Minerale sind in der Regel sehr hart und spröde; sie spalten und brechen daher wie Porzellan. Umso überraschender ist es, dass das neue synthetische Material – ganz im Gegensatz zu dem Original aus der Tiefsee – flexibel ist wie Gummi.

Zum Beispiel lassen sich die synthetischen Nadeln in eine U-Form biegen, ohne dass sie brechen. Diese ungewöhnliche Eigenschaft ist, wie die Wissenschaftler in einer Science-Veröffentlichung schreiben, hauptsächlich auf den Anteil organischer Substanz zurückzuführen. Dieser Anteil ist in dem neuen Material etwa zehn Mal so hoch ist wie in den natürlichen Spiculae, wie die Schwammnadeln auch genannt werden.

Spicula sind Skelettelemente, die in den meisten Schwämmen vorkommen. Sie unterstützen die Struktur und halten außerdem Feinde ab. Sie sind außerordentlich hart, stachelig und selbst mit einem Messer nur schwer zu schneiden. Mit diesen Eigenschaften liefern sie ein gutes Beispiel für ein leichtgewichtiges, festes und undurchdringbares Verteidigungssystem, wie es in Zukunft vielleicht auch für Körperrüstungen in Frage kommen könnte.

Die Wissenschaftler um Wolfgang Tremel, Professor an der Johannes Gutenberg-Universität Mainz, und Hans-Jürgen Butt, Direktor am Max-Planck-Institut für Polymerforschung, haben sich von diesen Schwammnadeln inspirieren lassen und sie im Labor gezüchtet. Als Ausgangsmaterial wurde Calciumcarbonat in Form von Calcit und Silicatein-α verwendet. Silicatein-α ist ein Protein aus Kieselschwämmen, das in der Natur die Bildung von Silica, aus dem die Nadeln von Kieselschwämmen bestehen, aus löslicher Kieselsäure katalysiert. Im Labor wurde Silicatein-α eingesetzt, um die Selbstorganisation von Calcit-Nadeln – ähnlich wie in den Nadeln des Wimpern- oder Kronenkalkschwamms Sycon sp. – zu steuern. Auf diese Weise wurden Calcit-Nanokristalle aneinandergelagert und durch Silicatein-α „verklebt“. Nach sechsmonatiger Reifezeit war aus einem zunächst amorphen ein kristallines Material entstanden, in dem die Calcit-Nanokristalle wie bei einem Backstein-Mauerwerk aneinandergelagert und von dem Protein zementähnlich verklebt sind. Es entstanden Nadeln von 10 bis 300 Mikrometer Länge und 5 bis 10 Mikrometer Durchmesser.

Wie die Wissenschaftler, darunter Chemiker, Polymerforscher und der Molekularbiologe Professor Werner E. G. Müller der Universitätsmedizin Mainz, in der Science-Veröffentlichung außerdem schreiben, besitzen die synthetischen Nadeln über die genannten Besonderheiten hinaus auch noch die Eigenschaft, dass sie selbst in gebogenem Zustand Lichtwellen leiten können.

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_flexmin1.jpg
Test der Biegefestigkeit von natürlichen (oben) und synthetischen (unten) Spicula mit einem Mikromanipulator
Quelle: AG Tremel, JGU

http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_flexmin2.jpg
Die synthetischen Spicula sind auch deshalb so flexibel, weil die Calcit-Ziegel so klein sind (im Nanometerbereich).
Quelle: AG Tremel, JGU

Veröffentlichung:
Filipe Natalio et al.
Flexible Minerals: Self-Assembled Calcite Spicules with Extreme Bending Strength
Science, 15. März 2013
DOI: 10.1126/science.1216260
http://www.sciencemag.org/content/339/6125/1298

Weitere Informationen:
Univ.-Prof. Dr. Wolfgang Tremel
Institut für Anorganische Chemie und Analytische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25135
Fax +49 6131 39-25605
E-Mail: tremel@uni-mainz.de
http://www.ak-tremel.chemie.uni-mainz.de/index.php

Prof. Dr. Hans-Jürgen Butt
Max-Planck-Institut für Polymerforschung
Ackermannweg 12
D 55128 Mainz
Tel. +49 6131 379111
E-Mail: butt@mpip-mainz.mpg.de
http://www.mpip-mainz.mpg.de/10551/Physik_der_Grenzflaechen

Weitere Links:
http://www.youtube.com/watch?v=XNleh50Ug_k

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/presse/55401.php
http://www.sciencemag.org/content/339/6125/1298

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

nachricht Schnell, berührungslos: Dehnungsmessverfahren für thermisch-mechanisch hoch belastete Werkstoffe
20.06.2017 | Fraunhofer-Institut für Werkstoffmechanik IWM

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie