Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ins Innerste geschaut: Computertomograph spürt Poren im Aluminiumguss zerstörungsfrei auf

03.04.2013
Sie wirken organisch, fast schon künstlerisch. Es sind graphisch dargestellte Schwindungsporen in Aluminiumlegierungen, die Forscher des Fraunhofer LBF mit Hilfe eines Computer-Tomographen (CT) abbilden.

Auf diesem Wege kommen sie Fehlern in Bauteilen aus Aluminiumguss auf die Schliche. Ihr Konzept ermöglicht die Entwicklung von zuverlässigen, weitergehend optimierten Aluminiumgussteilen, deren Qualität erstmals zerstörungsfrei geprüft werden kann. Vor allem für Gießereien und die Produktion von Fahrwerksteilen, Motorenkomponenten und Maschinenbauteilen in der Automobilindustrie und des Maschinenbaus eignet sich das Verfahren.


Schwindungsporen aus zerstörungsfreier Prüfung mit Korrelation zwischen den be-rechneten Kerbformzahlen und Ergebnissen aus FEM-Berechnungen. Graphik: Fraunhofer LBF


FEM-Berechnung der porenbehafteten Proben, hergestellt aus ND-Kokillenguss. Graphik: Fraunhofer LBF

Qualitätskriterien für Gussbauteile können damit stärker auf ihre Eigenschaften zugeschnitten werden und Eigenschaftsstreuungen von Fertigungschargen lassen sich anhand von CT-Aufnahmen beurteilen.

Bei der Herstellung von Aluminiumgussteilen kommt es auf eine materialeffiziente und kostengünstige Konstruktion an. Um einen dauerhaften Wettbewerbsvorteil zu sichern, müssen die mechanischen Eigenschaften von Aluminiumgussteilen zuverlässig gewährleistet werden. Dies ist möglich, wenn die Festigkeiten von der Produktentwicklung bis zur Serienfertigung kontrolliert werden können. Die häufigsten Fehler in Gusskomponenten aus Aluminium-Legierungen sind Porositäten, die bei der Fertigung entstehen. Soll die Lebensdauer solch fehlerhafter Bauteile analysiert werden, müssen Form, Größe, Lage und Verteilung der Poren und Einschlüsse berücksichtigt werden. Diese sind bei zyklisch belasteten Bauteilen entscheidend für die Lebensdauer.

Die Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF entwickelten unter Berücksichtigung von geo-metrischen Kenngrößen des Defekts ein Parametermodell zur Lebensdauerberechnung. Damit ist es möglich, die Schwingfestigkeit von Aluminiumgussteilen auf Basis von zerstörungsfreien Prüfungen quantitativ zu ermitteln. Das Modell lässt sich auf alle Aluminiumgussbauteile anwenden.

Die Darmstädter Wissenschaftler entwickelten es im AiF-Forschungsprojekt „EPOS – Entwicklung und Integration von Beurteilungskriterien zur Qualitätssicherung und Bauteilberechnung unter Berücksichtigung des Einflusses von Poren und nichtmetallischen Verunreinigungen auf die Schwingfestigkeit von Aluminium-Gusslegierungen“ des Bundesverbandes der Deutschen Gießerei-Industrie (BDG).

Qualität zerstörungsfrei prüfen
Für die zerstörungsfreien Prüfungen an Schwingfestigkeitsproben aus Aluminiumlegierungen nutzten die LBF-Forscher einen Computertomographen. Sie ermittelten dreidimensionale Geometrieinformationen der Porositäten, aus denen sie relevante Kenngrößen ableiteten. Anschließend wurde die Wirkung der Porositäten auf die örtlichen Beanspruchungen im Gefüge, in Hinblick auf die Form, Größe und Lage der Poren, untersucht und quantifiziert. Im ersten Schritt erstellten die Wissenschaftler Finite Element Modelle für kugelförmige Poren, welche die untersuchten Gefüge aus Sicht der inneren Beanspruchung ingenieurmäßig sinnvoll abbilden. Im Weiteren folgten Finite Element Modelle der realitätsnahen Gefügeinhomogenitäten.
Anhand der von der Computertomographie rekonstruierten Mikrostrukturen der Proben aus Aluminiumlegierungen wurden die mikromechanischen Beanspruchungen abgebildet und parametriert. Darüber hinaus brachten die Forscher die innere Kerbwirkung in Zusammenhang zu den charakteristischen Geometriekennwerten der Porositä-ten und leiteten aus diesen Ergebnissen ein parametriertes Lebensdauermodell ab. Um das Modell zu validieren, führten sie an den ungekerbten Proben Schwingfestigkeitsuntersuchungen durch.

Das erarbeitete Lebensdauermodell ermöglicht die Ableitung von dreidimensionalen Grenzmusterbauteilen, welche die zulässigen Porositäten darstellen. Grundsätzlich besteht damit die Möglichkeit, die Schwingfestigkeitseigenschaften von Aluminiumgussteilen auf Basis von zerstörungsfreien Prüfverfahren quantitativ ohne Versuche oder FEM-Berechnungen zu bewerten.

Anke Zeidler-Finsel | Fraunhofer-Institut
Weitere Informationen:
http://www.lbf.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscher spinnen künstliche Seide aus Kuhmolke
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen