Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Hobbykeller drucken: Hauchdünne berührungsempfindliche Displays auf vielen Materialien

07.10.2014

Wer bisher eine Grußkarte an die Liebsten drucken wollte, konnte diese nur durch bunte Grafiken, extravagante Schrifttypen und edles Papier aufwerten. Doch wie wäre es, wenn man auf dem heimischen Drucker gleich hauchdünne Bildschirme in das Papier einarbeiten könnte, die selber entworfene Symbole anzeigen oder sogar auf Berührungen reagieren?

Nicht nur das ermöglichen nun Saarbrücker Informatiker. Sie haben einen Ansatz entwickelt, mit dessen Hilfe in der Zukunft jeder Laie Displays in beliebigen Formen auf verschiedene Materialien drucken und somit den Alltag völlig verändern könnte.


Die hauchdünnen Bildschirme können auf unterschiedliche Materialien gedruckt werden.

Universität des Saarlandes


Ein Uhrarmband mit hauchdünnem Bildschirm.

Universität des Saarlandes

Die Postkarte zeigt ein historisches Automobil. Drückt man auf einen Knopf, leuchten Hinterachse und Lenkradstange in der gleichen Farbe auf. Möglich machen dies zwei Segmente auf einem flexiblen Display, die genau der Form der Autoteile entsprechen. Saarbrücker Informatiker um Jürgen Steimle haben es auf einem handelsüblichen Tintenstrahldrucker ausgedruckt.

Es ist elektrolumineszent: Legt man eine elektrische Spannung an, gibt es Licht ab. Dieser Effekt wird auch genutzt, um in Autos Armaturenbretter bei Nacht zu beleuchten. Steimle leitet die Arbeitsgruppe „Embodied Interaction“ am Saarbrücker Exzellenzcluster „Multimodal Computing and Interaction“, in der auch Simon Olberding forscht.

„Bisher war so etwas nicht möglich“, erklärt Olberding, „Displays wurden in Massen produziert, waren starr, hatten immer eine rechteckige Form.“ Genau das wollten Olberding und Steimle ändern. Der von ihnen entwickelte Prozess sieht wie folgt aus: Der Anwender entwirft mit einem Programm wie Microsoft Word oder Powerpoint eine digitale Vorlage für das gewünschte Display.

Über die von den Saarbrücker Informatikern entwickelten Verfahren „Screen Printing“ und „Conductive Inkjet Printing“ kann er diese nun drucken. Beide Verfahren haben unterschiedliche Stärken und Schwächen, lassen sich aber von einer Person je nach Verfahren in nur wenigen Minuten oder in zwei bis vier Stunden durchführen. Das Druckergebnis sind relativ hochaufgelöste Displays, die nur 0,1 Millimeter dick sind. Eine Din A4-Seite voll zu bedrucken, schlägt mit rund 20 Euro zu Buche, am teuersten ist dabei die Spezialtinte.

Da sich mit den Verfahren auch Materialien wie Papier, Kunststoffe, Leder, Keramik, Stein, Metall und Holz bedrucken lassen, sind allerlei zweidimensionale, aber auch dreidimensionale Formen möglich. Die Anzeigen können dabei wahlweise, aus einem Segment (Fläche, Kontur, Muster, Rastergrafik), mehreren Segmenten oder unterschiedlich aufgebauten Matrizen bestehen. „Sogar berührungsempfindliche Displays können wir drucken“, sagt Olberding.

Die Anwendungsmöglichkeiten sind damit vielfältig: Diplays lassen sich so in nahezu jeden Alltagsgegenstand integrieren – nicht nur in Papierobjekte, sondern zum Beispiel auch auf Möbel und Einrichtungsgegenstände, Taschen oder am Körper getragene Gegenstände. So könnte man beispielsweise das Armband einer Uhr erweitern, damit es aufleuchtet, wenn eine Kurznachricht eintrifft. „Wenn wir unseren Ansatz jetzt mit 3D-Druck kombinieren, können wir dreidimensionale Gegenstände drucken, die Informationen anzeigen und auf Berührungen reagieren“, erklärt Steimle.

Hintergrund Saarbrücker Informatik

Den Kern der Saarbrücker Informatik bildet die Fachrichtung Informatik an der Universität des Saarlandes. In unmittelbarer Nähe forschen auf dem Campus sieben weitere weltweit renommierte Forschungsinstitute. Neben den beiden Max-Planck-Instituten für Informatik und Softwaresysteme sind dies das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI), das Zentrum für Bioinformatik, das Intel Visual Computing Institute, das Center for IT-Security, Privacy and Accountability (CISPA) und der Exzellenzcluster „Multimodal Computing and Interaction“.

Pressefotos finden Sie unter: www.uni-saarland.de/pressefotos

Ein kurzes Video finden Sie unter: http://youtu.be/LiD7dnqY034

Fragen beantwortet:
Dr. Jürgen Steimle
Exzellenzcluster „Multimodal Computing and Interaction“
E-Mail: jsteimle@mmci.uni-saarland.de
Tel.: 0681 302-71935

Simon Olberding
Exzellenzcluster „Multimodal Computing and Interaction“
E-Mail: solberdi@mmci.uni-saarland.de
Tel.: 0681 302-71937

Redaktion:
Gordon Bolduan
Wissenschaftskommunikation
Kompetenzzentrum Informatik Saarland
Tel: +49 681 302-70741
E-Mail: bolduan@mmci.uni-saarland.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610) richten.

Weitere Informationen:

http://embodied.mpi-inf.mpg.de/research/printscreen/
http://youtu.be/LiD7dnqY034 - Video

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise