Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie hoher Druck Bauteile stabiler macht

08.04.2010
Wenn Kraftstoff in moderne Dieselmotoren eingespritzt wird, müssen die Bauteile enormen Druck aushalten. Dennoch will man dafür möglichst leichte Materialien verwenden.

Um beide Anforderungen unter einen Hut zu bekommen, setzt man die Bauteile einmal unter extrem hohen Druck und verformt damit die Hohlkörper. Durch die Verformung wird in den Materialien eine Spannung erzeugt.

Diese führt dazu, dass die Bauteile einen so hohen Innendruck aushalten können, wie es sonst nur mit erheblich größerem Materialeinsatz möglich wäre. Für das Autofrettage genannte Verfahren berechnen Ingenieure der Universität des Saarlandes, wie sich die einmal verformten Bauteile bei der Weiterverarbeitung verhalten.

Sie präsentieren ihre Simulationen vom 19. bis 23. April auf dem saarländischen Forschungsstand der Hannover Messe (Halle 2, Stand C 44).

Autofrettage ist das französische Wort für Selbstschrumpfung. Es bezeichnet ein Verfahren, bei dem Materialien einem so hohen Druck ausgesetzt werden, dass sie sich unwiederbringlich verformen. "Mit einer ölhaltigen Flüssigkeit wird in den Bauteilen ein Innendruck von mehreren Tausend Bar erzeugt. Dieser verformt die Bauteile so stark, dass sie danach selbst unter Spannung stehen", sagt Dirk Bähre, Professor für Fertigungstechnik der Universität des Saarlandes. Die Materialien würden dadurch fester und weniger anfällig für Risse. Zugleich werde aber die Weiterverarbeitung anspruchsvoller.

"Wenn man einzelne Schichten dieser Materialien wieder abträgt oder Löcher für Leitungen durchbohrt, kann dies die Eigenspannung stark verändern und zu nachträglichen Verformungen führen", sagt der Saarbrücker Ingenieur. Er entwickelt mit seinen Mitarbeitern daher Modelle, mit denen vorausberechnet werden kann, wie sich die Bauteile genau verformen und an welchen Stellen zum Beispiel noch mehr Materialien eingespart werden können. "Durch die Simulation der Verformung können die einzelnen Fertigungsschritte besser aufeinander abgestimmt werden", erläutert Bähre. Das verkürze auch die Herstellungszeit und helfe dabei, die Produktionskosten zu senken.

Die Saarbrücker Ingenieure arbeiten bei der Modellierung mit der Firma Maximator aus Zorge (Harz) zusammen, die Hochdruck- und Prüftechnik herstellt und das Autofrettage-Verfahren auf verschiedene Bauteile anwendet. "Diese zukunftsweisende Technologie ist nicht nur für die Autoindustrie interessant, sondern auch für alle großen Hydraulikanlagen zum Beispiel in Raffinerien und der chemischen Industrie", meint Professor Bähre. Mit seinem Forscherteam entwickelt er für verschiedene Anwendungen Konstruktions- und Fertigungsrichtlinien. In gemeinsamen Industrieprojekten kann er damit auch mittelständischen Firmen helfen, die keine eigene Entwicklungsabteilung besitzen, aber dennoch das Autofrettage-Verfahren einsetzen möchten.

Fragen beantworten:

Prof. Dr. Dirk Bähre
Lehrstuhl für Fertigungstechnik der Universität des Saarlandes
Tel. 0681 / 302-3075
E-Mail: d.baehre@mx.uni-saarland.de
Horst Brünnet
Tel. 0681 / 302-58303
Tel. 0511 / 89 497101 (Telefon am Messestand)
E-Mail: h.bruennet@mx.uni-saarland.de

Friederike Meyer zu Tittingdorf | idw
Weitere Informationen:
http://www.lft.uni-saarland.de
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops