Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hohenstein Institute forschen an farbenfroher Zukunft

01.10.2010
Entwicklung photochromer Textildrucke ermöglicht neue Produktideen

Brillengläser, die sich je nach Sonnenlicht verdunkeln - ein altbekanntes Beispiel für die bisherige Nutzung des Photochromie-Effekts.

Bei der Photochromie handelt es sich um die Fähigkeit von Molekülen, bei Einfall von UV-Strahlung von einer farblosen in eine farbige Form zu wechseln und dies bei Abdunkelung entsprechend wieder umzukehren. Auch in Spielzeugen und modischen Accessoires findet die Photochromie bereits Anwendung.

Künftig sollen auch Textilien ihre Farbe unter Einfluss der Sonne verändern und damit völlig neue Produkte ermöglichen. Forscher der Hohenstein Institute in Bönnigheim beschäftigen sich mit der Entwicklung von photochromen Textilmaterialien.

Dr. Jan Beringer, Forschungsleiter der Abteilung Function & Care, sieht vielfältige Einsatzmöglichkeiten wie zum Beispiel selbstabdunkelnde Gardinen, Sonnenschirme und Markisen: „Nicht zu unterschätzen sind auch die Möglichkeiten, die sich für die Kleidungsindustrie ergeben. Vorstellbar sind neben einer Vielzahl modischer Effekte auch nützliche Funktionen wie die situationsabhängige Erhöhung des UV-Schutzes, durch Änderung der Kleidungsfarbe. Mit der Entwicklung solch innovativer Produkte macht die deutsche Bekleidungs- und Heimtextilienindustrie einen weiteren enormen Know-how-Schritt in Richtung Zukunft.“

Projektleiterin Dr. Edith Claßen aus Dr. Beringers Forscherteam geht davon aus, dass die Forschungsergebnisse sich aber auch auf andere Materialien übertragen lassen: „Photochrome Lacke und Glasbeschichtungen mit intelligenten Funktionen könnten zum Beispiel für die Automobilbranche sehr interessant sein. Hier kann der Farbwechsel als Schutzfunktion dienen, indem das Material bei Dämmerung oder schlechten Wetterverhältnissen automatisch in eine Signalfarbe umschlägt.

Noch stehen die Forscher aber erst am Anfang ihrer Arbeit. Bei ersten Mustermaterialien „ermüden“ die photochromen Moleküle quasi nach einiger Zeit und die Textilien wechseln nicht oder nur stark verzögert ihre Farbe. Abhilfe soll ein besserer Schutz der photochromen Systeme vor Ermüdung durch Photooxidation, eine chemische Reaktion unter Einfluss von Licht und Sauerstoff, schaffen.

Das IGF-Vorhaben AiF-Nr. 15176 N/1 der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstraße 12 - 14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Rose-Marie Riedl | Hohenstein Institute
Weitere Informationen:
http://www.hohenstein.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie