Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hoffnungsträger Hightech-Glas: Neuer Bayerischer Forschungsverbund FORGLAS definiert das Glas neu

03.02.2010
In Zukunft erzeugen Gebäude Energie, anstatt sie nur zu verbrauchen. Für diese Vision entwickelt der Forschungsverbund FORGLAS neue, effiziente glasbasierte Multifunktionswerkstoffe. Die eignen sich auch dafür, Altbauten günstig von Energieschleudern in Energiesparer zu verwandeln. Zusätzlich gibt die Forschungsarbeit der heimischen Glasindustrie eine dringend benötigte Perspektive für die Zukunft.

In der Roadmap zur Energiepolitik 2020 hat die deutsche Bundesregierung beschlossen bis 2020 die Treibhausgasemissionen um 40 % zu senken und gleichzeitig die Energieproduktivität zu verdoppeln (bezogen auf 1990). Um diese Ziele zu erreichen, kommt der Steigerung der Energieeffizienz in Gewerbe- und Wohngebäuden, und damit dem Sonnenlicht als Energiequelle, eine überragende Bedeutung zu.

Diese Energiequelle besser nutzen zu können und damit neue Geschäftsfelder für die heimische Glasindustrie zu öffnen, ist das Ziel des Forschungsverbundes FORGLAS. In den nächsten drei Jahren wird der Verbund, in dem fünf wissenschaftliche Institute (drei Lehrstühle der Universität Bayreuth, die Universität Erlangen und das Fraunhofer Institut in Würzburg) und 16 Unternehmen aus der gesamten Glaswertschöpfungskette zusammenarbeiten, multifunktionale Werkstoffe aus Glas für energieeffiziente Gebäudetechnologien entwickeln.

Die Bayerische Forschungsstiftung unterstützt das Vorhaben mit einem Budget von 2,2 Mio. Euro. Weitere 3,2 Mio. Euro steuert die einschlägige Industrie bei. Sprecher des neuen Forschungsverbundes sind Prof. Dr. Monika Willert-Porada, Inhaberin des Lehrstuhls für Werkstoffverarbeitung an der Universität Bayreuth, und Dipl.-Ing. Stefan Trassl, Geschäftsführer der Firma SiLi aus Warmensteinach.

Glas: Schlüsselwerkstoff für energieeffiziente Hightech-Materialien
Beim Heizen oder Kühlen von schlecht oder nur unzureichend gedämmten Gebäuden geht sehr viel Energie ungenutzt verloren. Doch eben solche Bauten haben weltweit einen hohen Flächenanteil an der gesamten Bausubstanz. In Deutschland liegt er bei über 80 Prozent. Nur mit erheblichem Sanierungsaufwand lässt sich bislang die Energieverschwendung stoppen - und der ist teuer. Zeit, neue Wege zu beschreiten. Zum Beispiel neue Materialien zu entwickeln, die bislang meist getrennt entwickelte Gebäude-, Glas-, und Photovoltaik-Technologien synergetisch integrieren.

Die Verbundpartner von FORGLAS werden in den drei Arbeitsgruppen "Spezielle Halbzeuge für Licht- und Wärmemanagement" sowie "Glasentwicklung und -Verarbeitungstechnologien" und "Querschnittsthemen" insgesamt zehn Teilprojekte umsetzen und dabei folgende ehrgeizige Ziele verfolgen:

-Neue Glaswerkstoffe entwickeln, die den Energiehaushalt von Gebäuden deutlich und nachhaltig verbessern.

-Neue Oberflächenbehandlungen ausarbeiten, die bestehende Glaswerkstoffe signifikant verbessern und sich aus ökologischer sowie ökonomischer Sicht in großem Maßstab realisieren lassen.

-Prozesse entwickeln, mit denen sich bekannte oder neue Glassorten zu Halbzeugen und Additiven wie Mikrokugeln, Flakes und Fasern verarbeiten lassen, die als Basis für neue Produkte und Anwendungen dienen.

-Beschleunigte Belastungstests entwerfen, die das Verhalten der neuen Werkstoffe und Produkte unter realen Umweltbedingungen simulieren. Auf dieser Grundlage lässt sich die Langzeitstabilität der Produkte verbessern.

Für die Umsetzung dieser Ziele ist FORGLAS bestens gerüstet: Der Verbund hat Zugriff auf eine Schmelz-Screening-Anlage, einen Mini-Melter und angeschlossene Verarbeitungsanlagen - das ist im institutionellen Umfeld europaweit einmalig. Durch diese sehr nah an eine reale Industrieproduktion angelehnte wissenschaftlich-experimentelle Ausstattung zur Herstellung und Verarbeitung von Glas schlägt FORGLAS erstmals die Brücke zwischen Grundlagenforschung und Produkt- sowie Prozessoptimierung.

Hightech-Glas als Hoffnungsträger
Für die unter hohem Konkurrenzdruck stehende Glasindustrie kommt die FORGLAS-Initiative zur rechten Zeit. Vor allem mittelständische Betriebe prägen europaweit diesen Industriezweig - auch in Bayern. Nur wenige dieser Glashersteller, Veredler und Verarbeiter verfügen jedoch über eigene Forschungsabteilungen. "Die am Forschungsverbund FORGLAS beteiligten Unternehmen erhalten die Möglichkeit, gemeinsam mit Partnern und führenden Forschungsinstituten neue, technologisch führende Produkte und Fertigungsverfahren zu entwickeln", sagt FORGLAS-Sprecherin Prof. Willert-Porada. "Auf dieser Basis können sie neue Geschäftsfelder erschließen, zu denen sie bisher keinen Zugang hatten." Dazu zählt die Verarbeitung von Glas zu multifunktionalen Baustoffen wie Anstrichen, Putzen und Fassadenelementen. Die glasbasierten Werkstoffe bestehen aus Kugeln, Fasern oder Flakes in einer polymeren und/oder mineralischen Grundsubstanz. Sie lassen sich als wärmespeichernde oder kühlende, schalldämmende und biologisch wirksame Elemente einsetzen.
Zu den Bayerischen Forschungsverbünden
FORGLAS ist Mitglied der Arbeitsgemeinschaft der Bayerischen Forschungsverbünde, abayfor, die seitens der Bayerischen Forschungsallianz (BayFOR) in einem eigenen Geschäftsbereich betreut wird. Die BayFOR setzt sich als gemeinnützige Gesellschaft für die Förderung des Wissenschafts- und Innovationsstandortes Bayern im Forschungsraum Europa ein. In Bayerischen Forschungsverbünden arbeiten Wissenschaftlerinnen und Wissenschaftler aus verschiedenen Hochschulen und zum Teil auch aus Unternehmen interdisziplinär zusammen, um komplexe Fragestellungen in zukunftsrelevanten Bereichen zu beantworten. Durch die Kooperation im Verbund wird eine Bündelung und Vernetzung der bayernweit bestehenden Kompetenzen erreicht. Weitere Informationen zu den bayerischen Forschungsverbünden finden Sie unter http://www.bayfor.org/forschungsverbuende.

Weitere Informationen zu FORGLAS finden Sie in Kürze unter: http://www.bayfor.org/forglas

Kontakt FORGLAS:
Prof. Dr. Monika Willert-Porada
Universität Bayreuth
Lehrstuhl für Werkstoffverarbeitung
Universitätsstr. 30
95447 Bayreuth
Tel: (0921) 55 7200
Fax: (0921) 55 7205
Email: monika.willert-porada@uni-bayreuth.de

Emmanuelle Rouard | idw
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.bayfor.org/forschungsverbuende
http://www.bayfor.org/forglas

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen