Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Höchstempfindlich die Wasserdurchlässigkeit von Ultrabarrierematerialien bestimmen

04.06.2012
Forscher des Fraunhofer-Institutes für Werkstoff- und Strahltechnik IWS Dres-den und die Firma SEMPA Systems GmbH Dresden starteten Anfang Mai ein weiteres gemeinsames Forschungs- und Entwicklungsprojekt, um die Wasserdampfdurchlässigkeit von Ultrabarrierematerialien im Hochdurchsatzverfahren zu bestimmen.
Die Wasserdampfdurchlässigkeit (Permeation) ist für eine Vielzahl Anwendungen gerade auf dem Gebiet der organischen Elektronik ein äußerst kritischer Parameter. Bereits geringste Feuchtespuren beeinträchtigen signifikant die Funktion bzw. Leistungsfähigkeit von organischen Leuchtdioden (OLED), elektronischer Tinte (E-Ink) oder von Solarzellen.

Da Lebenszyklen der entsprechenden Produkte (Leuchten, Displays, Solarmodule) von einigen Jahren, bei Solarzellen sogar Jahrzehnten, angestrebt werden, sind die daraus abgeleiteten Anforderungen an die Barrierematerialien enorm hoch. Lediglich 10 Mikrogramm Wasserdampf darf pro Quadratmeter Barrierefläche an einem Tag (10-4 g m-2 d-1) die aktiven Schichten erreichen. Barrieresysteme mit Permeationsraten im Bereich 10-5 und sogar 10-6 g Wasserdampf pro Tag und Quadratmeter Barrierefläche stehen bereits für die nahe Zukunft in den Roadmaps der Entwickler und Produzenten. 10-6 g m-2 d-1, das entspricht einer Barrierefläche von etwa 7 Fußballfeldern, die täglich lediglich einen einzigen Wassertropfen hindurchlassen darf!

Um für den Nachweis dieser äußerst geringen Wasserdampfspuren ein hinreichend empfindliches Messsystem den Anwendern zur Verfügung zu stellen, forschen und entwickeln die Wissenschaftler des Fraunhofer-Instituts IWS Dresden gemeinsam mit den Ingenieuren der SEMPA Systems GmbH seit ca. 5 Jahren. Seit einem halben Jahr kann die SEMPA Systems GmbH das erste Ergebnis dieser erfolgreichen Kooperation den Her-stellern und Anwendern von Ultrabarrierefolien anbieten. Das „HiBarSens®“ (High Barrier Sensor) benannte Messsystem erreicht eine um eine Größenordnung bessere Nachweisgrenze, als die derzeit verfügbaren Messgeräte. Dieser Leistungssprung hat seine Ursache im verwendeten Sensor: Ein Laser kann die wenigen permeierten Wassermoleküle sicher „zählen“ und somit die Nachweisgrenze bis in den 10-5er Bereich zukünftig sogar in den 10-6er Bereich absenken.

HiBarSens-Messgerät zur Routineuntersuchung der Wasserdampfpermeationsrate von Ultrabarrierematerialien. Bild: Fraunhofer IWS Dresden

Der Einsatz eines Lasers als Feuchtesensor eröffnet noch weitere Vorteile, die im nun gestarteten Forschungs- und Entwicklungsvorhaben umgesetzt werden sollen. Die optische Messung beeinflusst in keiner Art und Weise den Analyten, andererseits kann der Laserstrahl beliebig umgelenkt werden. Was lag näher, als ein Konzept zu entwickeln, das es ermöglicht, mit lediglich einem Sensor die Permeationsrate von mehreren Hochbarriereproben simultan zu messen? Ganze Messreihen, in denen entweder die Herstellungsparameter der Barrierefolien variiert wurden oder unterschiedliche Messbedingungen (Temperatur) vorgegeben werden, sind dann gleichzeitig durchführ-bar. Der Zeit- und Effizienzgewinn liegen auf der Hand, wenn man bedenkt, dass eine Permeationsmessung eine äußerst zeitintensive Angelegenheit ist. Muss man bei Barriereproben im Bereich von 10-1 g m-2 d-1 mit etwa 12 Stunden Messzeit rechnen, so sind es bei 10-2 g m-2 d-1 bereits einige Tage, bei 10-5 g m-2 d-1 sogar Wochen! Die Physik der Permeation lässt sich (leider) nicht umgehen, wenn man zuverlässig die richtigen Mess-daten erfassen möchte.

Die Projektmitarbeiter sind zuversichtlich, dass hoch ambitionierte Ziel zu schaffen: in 26 Monaten den Prototypen eines mit mindestens vier separaten Messzellen ausgestatteten Permeationsmesssystems für Ultrabarrieren der Öffentlichkeit zu präsentieren.

Bereits auf der LOPE-C Messe, dem Treffpunkt der Experten auf dem Gebiet der organischen Elektronik, werden SEMPA Systems GmbH und das Fraunhofer IWS Dresden erste Ergebnisse Ihrer Kooperation, insbesondere das HiBarSens® Gerät präsentieren.

Besuchen Sie uns auf der LOPE-C 2012 (4th International Conference and Exhibi-tion for the Organic and Printed Electronics Industry) vom 19. – 21. Juni 2012 in München (Halle B0, Stand 314).
Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
Winterbergstr. 28
01277 Dresden
Dr. Wulf Grählert
Tel. 0351 / 83391-3406
Fax 0351 / 83391-3300
E-Mail: wulf.graehlert@iws.fraunhofer.de
Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
Winterbergstr. 28
01277 Dresden
Tel. 0351 / 83391-3444
Fax 0351 / 83391-3300
E-Mail: ralf.jaeckel@iws.fraunhofer.de
Das hier vorgestellte Forschungs- und Entwicklungsprojekt wird mit Mitteln der Europäischen Union finanziert und von der Sächsischen Aufbaubank betreut. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

Dr. Ralf Jaeckel | Fraunhofer-Institut
Weitere Informationen:
http://www.iws.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten