Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durch Hochverformung erzeugt Forscherin neue Metalle mit besonderen Eigenschaften

13.01.2014
Metalle wie Kupfer und Kobalt lassen sich im Schmelzofen nicht vermischen. Da hilft nur ein Trick: Bei der so genannten Hochverformung werden beide Metalle in einer Art Schraubstock mit extremer Kraft gegeneinander verdreht, um sich in Nanodimensionen zu verzahnen.

Andrea Bachmaier, Materialwissenschaftlerin an der Universität des Saarlandes, erforscht solche nanokristallinen Metalle, die besondere mechanische und physikalische Eigenschaften aufweisen. Sie erhielt dafür eines der höchst dotierten Stipendien der Republik Österreich, das Erwin-Schrödinger-Stipendium, das jungen Wissenschaftlern aus Österreich einen Aufenthalt an international renommierten Forschungseinrichtungen gewährt.


Die Abbildung zeigt eine transmissionselektronische Aufnahme einer nanokristallinen, hochverformten Mikrostruktur.

Universität des Saarlandes

Nanokristalline Metalle, die sich zum Beispiel aus Kupfer und Kobalt zusammensetzen, sind extrem fest. Sie weisen außerdem Strukturen auf, bei denen sich magnetische und nichtmagnetische dünne Schichten abwechseln. „Dies führt zu einem Effekt, der auch Riesenmagneto-Widerstand genannt wird. Er spielt bei Schaltsystemen von elektronischen Leiterplatten, etwa in Smartphones, eine wichtige Rolle. Für die Entdeckung des Phänomens wurde 2007 der Physik-Nobelpreis verliehen“, erklärt Andrea Bachmaier. Sie sieht daher nicht nur in der Elektronikindustrie wichtige Anwendungsfelder für nanokristalline Metalle, sondern auch in der Medizintechnik sowie der Luft- und Raumfahrt. Bevor die neuartigen Werkstoffe aber zu einem breiteren Einsatz kommen, sind noch viele Forschungsfragen zu klären. „Wir müssen noch genauer verstehen, was bei der Hochverformung der Metalle auf der Nano-Ebene genau passiert und welche Eigenschaften sich daraus ableiten lassen“, sagt die promovierte Materialwissenschaftlerin.

Durch die Hochverformung werden zwei Metalle, die sich im geschmolzenen Zustand nicht vermischen, mit hoher Krafteinwirkung ineinander verwoben. „Wir nehmen dafür ein Metallstück etwa in der Größe einer Fünf-Cent-Münze. Diese wird zwischen zwei Stempel geklemmt und mit einem Flächendruck von zehn Giga-Pascal in sich verdreht. Das entspricht etwa dem 100-fachen Wasserdruck an der tiefsten Stelle des Ozeans und ist mit dem Druck zu vergleichen, den man benötigt, um Kohlenstoff in Diamant zu verwandeln“, erläutert Bachmaier. Dabei werden die Körner des Metallstücks sukzessive verkleinert, ab einer gewissen Verformung tritt aber eine Sättigung ein. Am Ende weist der gesamte Querschnitt des Werkstoffes eine einheitliche Struktur auf, die auch bei hohen Temperaturen stabil bleibt. Die Verzahnung der beiden unterschiedlichen Metalle Kupfer und Kobalt lässt sich nur in Nanodimensionen nachvollziehen. „In der Materialforschung spricht man dabei von Körnern oder Kristalliten. Das sind Bereiche im Inneren des Materials, die eine Kristallstruktur aufweisen, sich aber in ihrer Ausrichtung von den benachbarten Körner unterschieden“, erläutert die Forscherin.

Ein Korn hat ungefähr den Durchmesser vom Tausendstel eines menschlichen Haars. Je winziger die Körner sind, desto fester wird das Metall. Die Größe der Kristallite hat aber auch Einfluss auf die magnetischen Eigenschaften des Werkstoffs und seine elektrische Widerstandsfähigkeit. „Je nach Anforderung kann man die Nanostrukturen verändern, um bestimmte Eigenschaften bei einem Werkstoff zu erzeugen“, nennt Bachmaier als Vorteil. So könne man zum Beispiel Verunreinigungen einbauen, um die Kornstrukturen zu stabilisieren. Dazu werden Oxid-Partikel verwendet oder auch Kohlenstoff, der verhindert, dass sich die Korngrenzen weiter ausdehnen.

Während ihres zweijährigen Forschungsaufenthaltes in Saarbrücken will die Materialwissenschaftlerin verschiedene elektronenmikroskopische Verfahren für ihre Analysen nutzen. Dazu zählen das Rasterelektronenmikroskop, die Electron Backscatter Diffraction (EBSD), mit der man die Struktur von Kristallen analysieren kann, sowie die Energiedispersive Röntgenspektroskopie (EDX), mit der man die Zusammensetzung der Elemente einer Probe erkennen kann. Auch die Atomsonden-Tomographie der Saar-Uni, die dabei hilft, einzelne Atome einer Materialprobe zu bestimmen, will Andrea Bachmaier einsetzen. Ihre Forschungsarbeit wird von Christian Motz, Professor für experimentelle Methodik der Werkstoffwissenschaften an der Universität des Saarlandes, betreut.

Pressefotos unter: www.uni-saarland.de/pressefotos

Fragen beantwortet:

Dr. Andrea Bachmaier
Lehrstuhl für experimentelle Methodik der Werkstoffwissenschaften
an der Universität des Saarlandes
Tel. 0681/302-5163
Mail: a.bachmaier@matsci.uni-sb.de
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Weitere Informationen:

http://www.uni-saarland.de/fak8/wwm
http://www.materialwissenschaft.uni-saarland.de/
http://www.fwf.ac.at/de/projects/schroedinger.html

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscher spinnen künstliche Seide aus Kuhmolke
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie