Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durch Hochverformung erzeugt Forscherin neue Metalle mit besonderen Eigenschaften

13.01.2014
Metalle wie Kupfer und Kobalt lassen sich im Schmelzofen nicht vermischen. Da hilft nur ein Trick: Bei der so genannten Hochverformung werden beide Metalle in einer Art Schraubstock mit extremer Kraft gegeneinander verdreht, um sich in Nanodimensionen zu verzahnen.

Andrea Bachmaier, Materialwissenschaftlerin an der Universität des Saarlandes, erforscht solche nanokristallinen Metalle, die besondere mechanische und physikalische Eigenschaften aufweisen. Sie erhielt dafür eines der höchst dotierten Stipendien der Republik Österreich, das Erwin-Schrödinger-Stipendium, das jungen Wissenschaftlern aus Österreich einen Aufenthalt an international renommierten Forschungseinrichtungen gewährt.


Die Abbildung zeigt eine transmissionselektronische Aufnahme einer nanokristallinen, hochverformten Mikrostruktur.

Universität des Saarlandes

Nanokristalline Metalle, die sich zum Beispiel aus Kupfer und Kobalt zusammensetzen, sind extrem fest. Sie weisen außerdem Strukturen auf, bei denen sich magnetische und nichtmagnetische dünne Schichten abwechseln. „Dies führt zu einem Effekt, der auch Riesenmagneto-Widerstand genannt wird. Er spielt bei Schaltsystemen von elektronischen Leiterplatten, etwa in Smartphones, eine wichtige Rolle. Für die Entdeckung des Phänomens wurde 2007 der Physik-Nobelpreis verliehen“, erklärt Andrea Bachmaier. Sie sieht daher nicht nur in der Elektronikindustrie wichtige Anwendungsfelder für nanokristalline Metalle, sondern auch in der Medizintechnik sowie der Luft- und Raumfahrt. Bevor die neuartigen Werkstoffe aber zu einem breiteren Einsatz kommen, sind noch viele Forschungsfragen zu klären. „Wir müssen noch genauer verstehen, was bei der Hochverformung der Metalle auf der Nano-Ebene genau passiert und welche Eigenschaften sich daraus ableiten lassen“, sagt die promovierte Materialwissenschaftlerin.

Durch die Hochverformung werden zwei Metalle, die sich im geschmolzenen Zustand nicht vermischen, mit hoher Krafteinwirkung ineinander verwoben. „Wir nehmen dafür ein Metallstück etwa in der Größe einer Fünf-Cent-Münze. Diese wird zwischen zwei Stempel geklemmt und mit einem Flächendruck von zehn Giga-Pascal in sich verdreht. Das entspricht etwa dem 100-fachen Wasserdruck an der tiefsten Stelle des Ozeans und ist mit dem Druck zu vergleichen, den man benötigt, um Kohlenstoff in Diamant zu verwandeln“, erläutert Bachmaier. Dabei werden die Körner des Metallstücks sukzessive verkleinert, ab einer gewissen Verformung tritt aber eine Sättigung ein. Am Ende weist der gesamte Querschnitt des Werkstoffes eine einheitliche Struktur auf, die auch bei hohen Temperaturen stabil bleibt. Die Verzahnung der beiden unterschiedlichen Metalle Kupfer und Kobalt lässt sich nur in Nanodimensionen nachvollziehen. „In der Materialforschung spricht man dabei von Körnern oder Kristalliten. Das sind Bereiche im Inneren des Materials, die eine Kristallstruktur aufweisen, sich aber in ihrer Ausrichtung von den benachbarten Körner unterschieden“, erläutert die Forscherin.

Ein Korn hat ungefähr den Durchmesser vom Tausendstel eines menschlichen Haars. Je winziger die Körner sind, desto fester wird das Metall. Die Größe der Kristallite hat aber auch Einfluss auf die magnetischen Eigenschaften des Werkstoffs und seine elektrische Widerstandsfähigkeit. „Je nach Anforderung kann man die Nanostrukturen verändern, um bestimmte Eigenschaften bei einem Werkstoff zu erzeugen“, nennt Bachmaier als Vorteil. So könne man zum Beispiel Verunreinigungen einbauen, um die Kornstrukturen zu stabilisieren. Dazu werden Oxid-Partikel verwendet oder auch Kohlenstoff, der verhindert, dass sich die Korngrenzen weiter ausdehnen.

Während ihres zweijährigen Forschungsaufenthaltes in Saarbrücken will die Materialwissenschaftlerin verschiedene elektronenmikroskopische Verfahren für ihre Analysen nutzen. Dazu zählen das Rasterelektronenmikroskop, die Electron Backscatter Diffraction (EBSD), mit der man die Struktur von Kristallen analysieren kann, sowie die Energiedispersive Röntgenspektroskopie (EDX), mit der man die Zusammensetzung der Elemente einer Probe erkennen kann. Auch die Atomsonden-Tomographie der Saar-Uni, die dabei hilft, einzelne Atome einer Materialprobe zu bestimmen, will Andrea Bachmaier einsetzen. Ihre Forschungsarbeit wird von Christian Motz, Professor für experimentelle Methodik der Werkstoffwissenschaften an der Universität des Saarlandes, betreut.

Pressefotos unter: www.uni-saarland.de/pressefotos

Fragen beantwortet:

Dr. Andrea Bachmaier
Lehrstuhl für experimentelle Methodik der Werkstoffwissenschaften
an der Universität des Saarlandes
Tel. 0681/302-5163
Mail: a.bachmaier@matsci.uni-sb.de
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Weitere Informationen:

http://www.uni-saarland.de/fak8/wwm
http://www.materialwissenschaft.uni-saarland.de/
http://www.fwf.ac.at/de/projects/schroedinger.html

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Dem Fettfinger zu Leibe rücken: Neuer Nanolack soll Antifingerprint-Oberflächen schaffen
15.06.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Turbolader für den Lithium-Akku
08.06.2018 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

Meteoriteneinschläge und Spektralfarben: HITS bei Explore Science 2018

11.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

EMAG auf der AMB: Hochproduktive Lösungen für die vernetzte Automotive-Produktion

15.06.2018 | Messenachrichten

AchemAsia 2019 in Shanghai

15.06.2018 | Messenachrichten

Dem Fettfinger zu Leibe rücken: Neuer Nanolack soll Antifingerprint-Oberflächen schaffen

15.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics