Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochpräzise Nanostrukturierung mit Ultraschall: Neues Verfahren zur Erzeugung poröser Metalle

03.03.2011
Sie sind korrosionsbeständig, mechanisch äußerst stark und halten extrem hohen Temperaturen stand: Mit diesen Eigenschaften sind poröse Metalle für zahlreiche Technologiefelder von besonderem Interesse.

Sie zeichnen sich durch feinste Oberflächenstrukturen mit Poren aus, die im Durchmesser nur wenige Nanometer groß sind. Einem internationalen Forschungsteam um Dr. Daria Andreeva an der Universität Bayreuth (Lehrstuhl Physikalische Chemie II) ist es jetzt gelungen, ein hochleistungsfähiges und kostengünstiges Ultraschall-Verfahren für das Design und die Herstellung derartiger metallischer Strukturen zu entwickeln.

Metalle werden dabei in einer wässrigen Lösung mit Ultraschall so bearbeitet, dass Hohlräume von wenigen Nanometern entstehen – und zwar in präzise definierten Abständen. Für diese maßgeschneiderten Nanostrukturen gibt es schon heute ein breites Spektrum innovativer Anwendungen, beispielsweise in der Luftreinigung, der Energiespeicherung oder der Medizintechnik. Besonders vielversprechend ist der Einsatz poröser Metalle in Nanokompositen. Dabei handelt es sich um eine neue Klasse von Verbundwerkstoffen, in denen eine hochfeine Matrixstruktur mit Partikeln in einer Größenordnung von bis zu 20 Nanometern gefüllt wird.

Das in Bayreuth entwickelte Verfahren nutzt den Prozess der Blasenbildung, der in der Physik als Kavitation bezeichnet wird (abgeleitet von lat "cavus" = "hohl"). In der Seefahrt ist dieser Vorgang wegen der schweren Schäden, die an Schiffsschrauben und Schiffsturbinen entstehen können, gefürchtet. Denn bei sehr hohen Drehgeschwindigkeiten bilden sich unter Wasser Dampfblasen, die nach kurzer Zeit unter extrem hohen Drücken in sich zusammenfallen und die metallischen Oberflächen von Schrauben und Turbinen verformen. Der Prozess der Kavitation lässt sich aber auch mit Ultraschall künstlich erzeugen. Ultraschall besteht aus Druckwellen mit Frequenzen oberhalb des hörbaren Bereichs (20 kHz) und erzeugt in Wasser sowie in wässrigen Lösungen Vakuumblasen. Wenn diese Blasen implodieren, entstehen Temperaturen von mehreren Tausend Grad Celsius und extrem hohe Drücke bis ca. 1000 bar.

Eine präzise Steuerung dieser Prozesse kann für eine gezielte Nanostrukturierung von Metallen eingesetzt werden, die sich in einer wässrigen Lösung befinden – vorausgesetzt, die Metalle bringen bestimmte physikalische und chemische Eigenschaften mit. Denn wie Dr. Daria Andreeva zusammen mit ihren Kollegen in Golm, Berlin und Minsk gezeigt hat, reagieren Metalle sehr unterschiedlich, wenn sie einer derartigen Ultraschallbehandlung ausgesetzt werden. Bei Metallen mit einer hohen Reaktivität wie Zink, Aluminium und Magnesium bildet sich schrittweise eine Matrixstruktur heraus, die durch eine Oxidschicht stabilisiert wird. Das Ergebnis sind poröse Metalle, die beispielsweise in Verbundwerkstoffen weiterverarbeitet werden können. Anders verhält es sich jedoch bei Edelmetallen wie Gold, Platin, Silber und Palladium. Diese widersetzen sich aufgrund ihrer geringen Oxidationsneigung der Behandlung durch Ultraschall; ihre Strukturen und Eigenschaften bleiben unverändert.

Die Tatsache, dass verschiedene Metalle unterschiedlich sensibel auf eine Ultraschallbehandlung reagieren, lässt sich für materialwissenschaftliche Innovationen nutzen: So können Legierungen zu Nanokompositen verarbeitet werden, in denen Partikel des stabileren Materials von einer porösen Matrix des instabileren Metalls umgeben sind. Dabei entstehen auf engstem Raum sehr große Oberflächen, weshalb diese Nanokomposite als Katalysatoren zum Einsatz kommen können. Sie bewirken, dass chemische Reaktionen besonders schnell und effizient ablaufen.

Neben Dr. Daria Andreeva waren auch Prof. Dr. Andreas Fery, Dr. Nicolas Pazos-Perez und Jana Schäferhans am Lehrstuhl Physikalische Chemie II an den Forschungsergebnissen beteiligt. Mit ihren Kollegen am Max-Planck-Institut für Kolloide und Grenzflächen in Golm, am Helmholtz-Zentrum Berlin für Materialien und Energie GmbH und an der Weißrussischen Staatsuniversität in Minsk haben sie ihre neuesten Ergebnisse in der Zeitschrift "Nanoscale" online publiziert.

Veröffentlichung:

Ekaterina V. Skorb, Dmitri Fix, Dmitry G. Shchukin, Helmuth Möhwald, Dmitry V.
Sviridov, Rami Mousa, Nelia Wanderka, Jana Schäferhans, Nicolas Pazos-Perez,
Andreas Fery, and Daria V. Andreeva,
Sonochemical formation of metal sponges,
in: Nanoscale, Advance first,
DOI-Bookmark: 10.1039/c0nr00635a
Ansprechpartner für weitere Informationen:
Dr. Daria Andreeva
Lehrstuhl Physikalische Chemie II
Universität Bayreuth
95440 Bayreuth
Tel.: +49 (0) 921 / 55-2750
E-Mail: daria.andreeva@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie