Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochfeste Materialien aus dem Druckkochtopf

18.03.2014

Überraschung in der Materialchemie: Mit Hitze und Druck können an der TU Wien Materialien für den Leichtbau, Schutzkleidung oder Sportgeräte hergestellt werden – besser, schneller und umweltfreundlicher als bisher.

Die Erdkruste funktioniert wie ein Dampfkochtopf. Bei großer Hitze und hohem Druck können Mineralien entstehen, die sich an der Erdoberfläche nicht so einfach bilden würden. Für die Synthese organischer Moleküle hingegen hielt man solch extreme Bedingungen lange Zeit für völlig ungeeignet. An der TU Wien stellte sich nun allerdings heraus, dass sich gerade durch Druck und hohe Temperatur organische Materialien mit außerordentlich guten Eigenschaften herstellen lassen – etwa Kevlar, ein vielseitig einsetzbares Hochleistungsmaterial.


„Mikro-Blumen“ aus PPPI, dem mechanisch stabilsten organischen Polymer der Welt. Die hochkristallinen Blumen haben einen Durchmesser von etwa fünf Mikrometern. TU Wien


Sofia Torres Venegas überprüft ein Ventil des Hochdruckreaktors. TU Wien

Wasserdampf statt Gift

Eigentlich widerspricht die Idee jeder Intuition: Bei großen, komplizierten organischen Molekülen würde man eher erwarten, dass sie durch Druck und Hitze kaputtgehen. Doch Miriam Unterlass stellt mit ihrem Team am Institut für Materialchemie der TU Wien bei knapp 200 Grad und 17 Bar organische Polymere her, die bisher nur mit großem Aufwand und unter Einsatz von höchst giftigen Zusatzstoffen produziert werden konnten. Statt wie bei herkömmlichen Verfahren mit toxischen Lösungsmitteln zu arbeiten, kommt sie mit heißem Wasserdampf aus, es handelt sich daher um eine ausgesprochen umweltfreundliche Synthesemethode.

In der Geologie kennt man das Phänomen der sogenannten „Hydrothermalsynthese“ schon lange. Viele Edelsteine entstehen nur in großer Tiefe, wo sie sich unter hohem Druck in Wasserreservoirs bilden. Im Gegensatz zu solchen anorganischen Mineralien, die oft zu einem großen Teil aus Silizium oder Metallen bestehen, sind heute allerdings viele Hochleistungsmaterialien organisch – sie sind hauptsächlich aus Kohlenstoff und Wasserstoff aufgebaut.

Ein Beispiel dafür ist das extrem widerstandsfähige Kevlar, das man für Schutzkleidung oder Bauteile mit extremer mechanischer Belastung verwendet. Auch für den Flugzeugbau sind solche höchst stabilen Materialien wichtig, weil sie oft nur einen Bruchteil dessen wiegen, was Metallteile mit vergleichbaren Eigenschaften auf die Waage bringen. Aus organischen Molekülen lassen sich Polymere mit einer sehr festen Struktur erzeugen, in der eine Vielzahl von Bindungen zwischen den Atomen für eine hohe Belastbarkeit sorgt. 

Extrem belastbar, aber schwer zu synthetisieren

Derart feste Materialien sind aber schwer herzustellen: „Wir haben es mit einem Widerspruch zwischen verschiedenen Anforderungen zu tun“, erklärt Miriam Unterlass. „Einerseits will man extrem starre Materialien, die auch bei großer Hitze nicht gleich schmelzen und sich nicht auflösen, doch andererseits ist es dann genau dadurch nicht möglich, die Stoffe zu lösen um sie dann in einer passenden Form kristallisieren zu lassen, wie man das etwa mit Salzen macht.“ Beim Verfahren, an dem die TU Wien arbeitet, läuft die Reaktion daher anders ab: Aus den Startmaterialien werden unter hohem Druck die gewünschten Moleküle synthetisiert, und im selben Schritt kristallisieren sie gleichzeitig zu einem Polymer.

Das neue Verfahren hat viele Vorteile: Man kann nicht nur auf gefährliche Nebenprodukte verzichten, man kommt auch mit deutlich weniger Energie aus, außerdem ist die Synthese im Druckreaktor schneller als bei bisherigen Verfahren. Auch das Endprodukt ist besser: „Wir können mit unserer Methode Materialien mit höherer Kristallinität herstellen, dadurch erreichen wir eine noch bessere mechanische Festigkeit“, sagt Miriam Unterlass. 

Der Blick ins Innere mit Infrarot-Licht

Die Details des Verfahrens sind kompliziert: Man muss den Masse- und Energietransport im Druckreaktor genau kennen, um die Vorgänge verstehen zu können. Freilich kann man den Reaktor, in dem nicht nur hohe Temperatur sondern auch ein hoher Druck herrscht, während des Syntheseprozesses einfach öffnen um nachzusehen, was drinnen gerade passiert. Daher wurde nun eine spezielle Infrarot-Sonde gekauft, die den extremen Bedingungen im Reaktor problemlos standhalten. „Die Sonde kommt direkt in den Reaktor, so können wir die Vorgänge im Inneren beobachten, ohne Proben aus dem System entnehmen zu müssen“, erklärt Unterlass.

Mit der neuen Hochtemperatur-IR-Sonde – es ist weltweit erst das zweite Gerät dieser Art - soll es nun noch einfacher und gezielter als bisher möglich sein, neue Materialien und neue Synthesemethoden zu entwickeln. Ideen gibt es genug: „Es gibt eine riesengroße Anzahl von organischen Molekülen, die tolle Materialeigenschaften versprechen, wenn es gelingt, aus ihnen Polymere herzustellen“, ist Unterlass sicher.

Rückfragehinweis:
Dr. Miriam Unterlass
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165206
miriam.unterlass@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/druckkochtopf/ Weitere Bilder
http://www.unterlasslab.com/ Miriam Unterlass und ihr Team

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics