Hochfeste Materialien aus dem Druckkochtopf

„Mikro-Blumen“ aus PPPI, dem mechanisch stabilsten organischen Polymer der Welt. Die hochkristallinen Blumen haben einen Durchmesser von etwa fünf Mikrometern. TU Wien

Die Erdkruste funktioniert wie ein Dampfkochtopf. Bei großer Hitze und hohem Druck können Mineralien entstehen, die sich an der Erdoberfläche nicht so einfach bilden würden. Für die Synthese organischer Moleküle hingegen hielt man solch extreme Bedingungen lange Zeit für völlig ungeeignet. An der TU Wien stellte sich nun allerdings heraus, dass sich gerade durch Druck und hohe Temperatur organische Materialien mit außerordentlich guten Eigenschaften herstellen lassen – etwa Kevlar, ein vielseitig einsetzbares Hochleistungsmaterial.

Wasserdampf statt Gift

Eigentlich widerspricht die Idee jeder Intuition: Bei großen, komplizierten organischen Molekülen würde man eher erwarten, dass sie durch Druck und Hitze kaputtgehen. Doch Miriam Unterlass stellt mit ihrem Team am Institut für Materialchemie der TU Wien bei knapp 200 Grad und 17 Bar organische Polymere her, die bisher nur mit großem Aufwand und unter Einsatz von höchst giftigen Zusatzstoffen produziert werden konnten. Statt wie bei herkömmlichen Verfahren mit toxischen Lösungsmitteln zu arbeiten, kommt sie mit heißem Wasserdampf aus, es handelt sich daher um eine ausgesprochen umweltfreundliche Synthesemethode.

In der Geologie kennt man das Phänomen der sogenannten „Hydrothermalsynthese“ schon lange. Viele Edelsteine entstehen nur in großer Tiefe, wo sie sich unter hohem Druck in Wasserreservoirs bilden. Im Gegensatz zu solchen anorganischen Mineralien, die oft zu einem großen Teil aus Silizium oder Metallen bestehen, sind heute allerdings viele Hochleistungsmaterialien organisch – sie sind hauptsächlich aus Kohlenstoff und Wasserstoff aufgebaut.

Ein Beispiel dafür ist das extrem widerstandsfähige Kevlar, das man für Schutzkleidung oder Bauteile mit extremer mechanischer Belastung verwendet. Auch für den Flugzeugbau sind solche höchst stabilen Materialien wichtig, weil sie oft nur einen Bruchteil dessen wiegen, was Metallteile mit vergleichbaren Eigenschaften auf die Waage bringen. Aus organischen Molekülen lassen sich Polymere mit einer sehr festen Struktur erzeugen, in der eine Vielzahl von Bindungen zwischen den Atomen für eine hohe Belastbarkeit sorgt. 

Extrem belastbar, aber schwer zu synthetisieren

Derart feste Materialien sind aber schwer herzustellen: „Wir haben es mit einem Widerspruch zwischen verschiedenen Anforderungen zu tun“, erklärt Miriam Unterlass. „Einerseits will man extrem starre Materialien, die auch bei großer Hitze nicht gleich schmelzen und sich nicht auflösen, doch andererseits ist es dann genau dadurch nicht möglich, die Stoffe zu lösen um sie dann in einer passenden Form kristallisieren zu lassen, wie man das etwa mit Salzen macht.“ Beim Verfahren, an dem die TU Wien arbeitet, läuft die Reaktion daher anders ab: Aus den Startmaterialien werden unter hohem Druck die gewünschten Moleküle synthetisiert, und im selben Schritt kristallisieren sie gleichzeitig zu einem Polymer.

Das neue Verfahren hat viele Vorteile: Man kann nicht nur auf gefährliche Nebenprodukte verzichten, man kommt auch mit deutlich weniger Energie aus, außerdem ist die Synthese im Druckreaktor schneller als bei bisherigen Verfahren. Auch das Endprodukt ist besser: „Wir können mit unserer Methode Materialien mit höherer Kristallinität herstellen, dadurch erreichen wir eine noch bessere mechanische Festigkeit“, sagt Miriam Unterlass. 

Der Blick ins Innere mit Infrarot-Licht

Die Details des Verfahrens sind kompliziert: Man muss den Masse- und Energietransport im Druckreaktor genau kennen, um die Vorgänge verstehen zu können. Freilich kann man den Reaktor, in dem nicht nur hohe Temperatur sondern auch ein hoher Druck herrscht, während des Syntheseprozesses einfach öffnen um nachzusehen, was drinnen gerade passiert. Daher wurde nun eine spezielle Infrarot-Sonde gekauft, die den extremen Bedingungen im Reaktor problemlos standhalten. „Die Sonde kommt direkt in den Reaktor, so können wir die Vorgänge im Inneren beobachten, ohne Proben aus dem System entnehmen zu müssen“, erklärt Unterlass.

Mit der neuen Hochtemperatur-IR-Sonde – es ist weltweit erst das zweite Gerät dieser Art – soll es nun noch einfacher und gezielter als bisher möglich sein, neue Materialien und neue Synthesemethoden zu entwickeln. Ideen gibt es genug: „Es gibt eine riesengroße Anzahl von organischen Molekülen, die tolle Materialeigenschaften versprechen, wenn es gelingt, aus ihnen Polymere herzustellen“, ist Unterlass sicher.

Rückfragehinweis:
Dr. Miriam Unterlass
Institut für Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165206
miriam.unterlass@tuwien.ac.at

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/druckkochtopf/ Weitere Bilder
http://www.unterlasslab.com/ Miriam Unterlass und ihr Team

Media Contact

Dr. Florian Aigner Technische Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer