Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hilfe für gebrochene Wirbel

24.07.2012
Materialwissenschaftler der Universität Jena entwickeln neuen Knochenzement

Es ist schnell passiert und kann jeden treffen: ein unglücklicher Sturz beim Radfahren, Baden oder bei der Arbeit und schon kann ein Wirbel brechen. Der Wirbel, genauer der Wirbelkörper, umschließt beim Menschen das empfindliche Rückenmark und schützt dieses vor Verletzungen.


So sieht eine typische Mikrostruktur eines Calciumphosphat-Knochenzements aus.
Foto: IMT/FSU


In einem Labor des Instituts für Materialwissenschaft und Werkstofftechnologie der Universität Jena demonstriert der Doktorand Stefan Maenz an einem Wirbelknochen-Modell, wie gebrochene Wirbelkörper mit einem speziellen Knochenzement wieder stabilisiert werden können.
Foto: Jan-Peter Kasper/FSU

Eigentlich sind die Wirbel, von denen der Mensch bis zu 34 unterschiedlicher Größe besitzt, stabile Knochen. Bei großer Krafteinwirkung jedoch können diese brechen. „Besonders bei älteren Menschen kommt das Problem des altersbedingten Knochenabbaus, die sogenannte Osteoporose, hinzu“, erläutert Prof. Dr. Raimund W. Kinne vom Lehrstuhl für Orthopädie des Universitätsklinikums Jena in Eisenberg. „Bei solchen osteoporotisch veränderten Knochen besteht eine erhöhte Bruchgefahr“, erläutert Kinne. „Daher können schon kleinere Kräfte zum Bruch führen.“

Ist der Wirbelkörper gebrochen, muss er stabilisiert werden. Dabei hilft ein sogenannter Knochenzement. Diesen Zement spritzt der Chirurg zur Fixierung in den gebrochenen Wirbel. Das verwendete Material ist ein Polymer, das sich nach der Injektion verfestigt. „Nachteilig dabei ist, dass dieser Kunststoff nicht resorbierbar – also vom Körper abbaubar – ist und dass die mechanischen Eigenschaften nicht zu dem des Wirbels passen“, erläutert Prof. Dr. Klaus D. Jandt von der Universität Jena.
So besteht die Gefahr einer Fraktur der Nachbarwirbel. Es gibt auch resorbierbare Knochenzemente, diese sind jedoch nicht mechanisch stabil genug. „Der Knochen ist ein komplexer Verbundwerkstoff, der auf verschiedenen Größenskalen organisiert ist“, so der Lehrstuhlinhaber für Materialwissenschaft weiter. „Ein idealer Knochenzement passt sich den Eigenschaften des heilenden Knochens laufend an“.

Am Anfang des Heilungsprozesses des Knochens wird eine große Festigkeit vom Knochenzement gefordert, um den noch schwachen Knochen zu unterstützen. Im Lauf des Heilungsprozesses wird der Knochen immer stabiler. Ideal wäre es, wenn die Festigkeit des Knochenzementes mit der Zeit in dem Maße abnehmen würde, wie die Festigkeit des heilenden Wirbelknochens zunimmt, um den Heilungsprozess des Knochens zu fördern.

Dieses Ziel verfolgt ein neues Projekt, das von den Jenaer Materialwissenschaftlern PD Dr. Jörg Bossert und Prof. Jandt in Zusammenarbeit mit Prof. Kinne geleitet wird. Mit dem Heidelberger Unternehmen Biopharm konnte ein industrieller Partner für das Projekt gewonnen werden, der eine ausgezeichnete Kompetenz im Bereich der Wachstumsfaktortechnologie aufweist. Die Wachstumsfaktoren steuern und beschleunigen die Umwandlung des Zementes in körpereigene Knochensubstanz. Das Forschungsvorhaben wird vom Bundesministerium für Bildung und Forschung im Rahmen des Förderprogramms „KMU innovativ: Biotechnologie – BioChance“ mit über einer Million Euro gefördert.

Der im Rahmen dieses Projektes zu entwickelnde Knochenzement zielt vor allem auf die Anwendung im osteoporotischen Knochen. „Die Struktur und die Eigenschaften des Knochenzements sollen so eingestellt werden, dass nach der Stabilisierung des Wirbelkörpers eine ausreichende Festigkeit gegeben ist und die Resorbierbarkeit eingestellt werden kann. Dabei ist von besonderer Bedeutung, dass das Material auch für einen Chirurgen unter Operationsbedingungen handhabbar ist“, weist Jörg Bossert vom Lehrstuhl für Materialwissenschaft auf die Anforderungen hin. Der Clou der Jenaer Innovation: Der Zement soll Proteine freisetzen, die gezielt den Knochenaufbau fördern.

„Dem Lehrstuhl sind bei diesem Projekt die Kooperation mit dem hervorragenden Industriepartner Biopharm aus Baden-Württemberg und die Förderung des wissenschaftlichen Nachwuchses wichtig“, betont Jandt. Einige Grundlagen für das neue Vorhaben konnten bereits in einem von der Carl-Zeiss-Stiftung geförderten Doktorandenprojekt gelegt werden. „Ich beschäftige mich seit etwa zwei Jahren mit der Thematik und freue mich, dass aus unserer erfolgreichen Vorarbeit ein solches Projekt hervorgegangen ist“, sagt Jandts Doktorand Stefan Maenz, der in dem aktuellen Forschungsvorhaben mitarbeitet. Erste Versuche mit Prototypen des neuen Knochenzements verliefen bereits vielversprechend. Mit der Marktreife des neuen Knochenzements wird bei erfolgreichem Projektverlauf in etwa vier bis fünf Jahren gerechnet.

Kontakt:
Prof. Dr. Raimund W. Kinne
Lehrstuhl für Orthopädie am Waldkrankenhaus Rudolf Elle
Klosterlausnitzer Str. 81, 07607 Eisenberg
Tel.: 036691 / 81228
E-Mail: raimund.w.kinne[at]med.uni-jena.de

Prof. Dr. Klaus D. Jandt
Institut für Materialwissenschaft und Werkstofftechnologie der Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730
E-Mail: k.jandt[at]uni-jena.de

Axel Burchardt | Universität Jena
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie