Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heute noch zehnmal teurer als Gold – Zukünftig kostengünstigere Herstellung von GaN-Kristallen

17.10.2011
Heute noch zehnmal teurer als Gold – Forscher von Fraunhofer und Industrie arbeiten an der kostengünstigeren Herstellung für Galliumnitridkristalle

Kristallines Galliumnitrid gilt als Halbleitermaterial der Zukunft. Leider ist der Wunderwerkstoff zurzeit noch extrem teuer. Das Fraunhofer Technologiezentrum Halbleitermaterialien THM und die Freiberger Compound Materials GmbH forschen mit finanzieller Unterstützung des Sächsischen Staatsministeriums für Wissenschaft und Kunst gemeinsam an einer neuen Technologie, die eine kostengünstigere Herstellung von hochwertigen Galliumnitrid-Kristallen ermöglicht.

Galliumnitrid-Kristalle sind ein wichtiger Hochleistungswerkstoff für spezielle elektronische Bauelemente, wie sie beispielsweise für energieeffiziente, robuste Elektroantriebe benötigt werden. Die Verringerung der hohen Herstellungskosten ist eine wichtige Voraussetzung für die erfolgreiche Kommer-zialisierung des vielversprechenden Halbleitermaterials.

Galliumnitrid (GaN) wird von den Fachleuten der Mikroelektronik als ein wichtiges Halbleitermaterial der Zukunft angesehen. Bereits heute wird es – in Form weißer und blauer Leuchtdioden – in energiesparenden Lichtquellen eingesetzt. GaN wird auch für den Mobilfunk eine wichtige Rolle beim effizienten Verstärken und schnellen Übertragen von Informationen spielen. Ein sehr großes Marktpotenzial besitzt GaN außerdem für verlustarme, hocheffiziente Leistungsbauelemente zum Wandeln von elektrischer Leistung, zum Beispiel in Computernetzteilen, bei der Photovoltaik oder in künftigen Elektrofahrzeugen.

Nach heutigem Stand der Technik kommt für weiße und blaue Leuchtdioden das GaN in Form einer hauchdünnen kristallinen Schicht, die auf einem Substrat aus Saphir oder Siliziumkarbid abgeschieden wird, zum Einsatz. Wegen der großen physikalischen und chemischen Unterschiede zwischen Substrat und Schicht entsteht jedoch zwangsläufig eine große Zahl von Kristallbaufehlern in der abgeschiedenen Schicht. Obwohl die Dichte der Kristallbaufehler mehr als eine Milliarde pro Quadratzentimeter beträgt, funktionieren die Leuchtdioden. Bei den Hocheffizienzbauelementen, wie sie in der Leistungselektronik oder im Mobilfunk benötigt werden, können die Leistungsfähigkeit und die Zuverlässigkeit aber bereits bei mehr als tausend Defekten pro Quadratzentimeter in der aktiven Schicht erheblich nachlassen. Deshalb ist es notwendig, für solche Bauelemente die aktiven Schichten auf arteigenen, einkristallinen GaN-Substraten abzuscheiden. Derartige Substrate sind heute noch extrem teuer. Bezogen auf das Gewicht ist ein GaN-Substrat mit einem Durchmesser von 50 mm fast zehnmal teurer als Gold.

Die Hauptursache dafür liegt darin, dass große GaN-Einkristalle bis heute nicht in ausreichenden Mengen verfügbar sind, da deren Herstellung schwierig ist. Aufgrund des hohen Schmelzpunkts, der bei mehr als 2500°C liegt, und wegen des hohen Dampfdrucks am Schmelzpunkt von mehr als 100 000 bar kann GaN nicht einfach mit der klassischen Schmelzzüchtung hergestellt werden, wie sie beispielsweise von der Freiberger Compound Materials GmbH eingesetzt wird, um tonnenweise hochgradig perfekte Galliumarsenid-Einkristalle zu einem Zehntel des Goldpreises zu produzieren.

GaN-Einkristalle stellt man heute vorwiegend nach dem sogenannten HVPE-Verfahren (Hydride Vapor Phase Epitaxy) her, das weltweit von einer Handvoll Firmen technologisch vorangetrieben wird. Bei der HVPE-Methode reagiert zunächst gasförmiger Chlorwasserstoff mit flüssigem, ca. 880 °C heißem Gallium zu Galliumchlorid. In einer Reaktionszone wird das Galliumchlorid bei Temperaturen zwischen 1000 und 1100 °C in die Nähe eines GaN-Kristallkeims gebracht. Unter Kontakt mit einströmendem Ammoniak verbindet sich das Galliumchlorid mit dem Ammoniak unter Freisetzung von Chlorwasserstoff zu kristallinem GaN. Unter optimalen Bedingungen können mit dem HVPE-Verfahren mittlerweile Kristalle bis zu 50 mm Durchmesser und mit Dicken von einigen Millimetern hergestellt werden.

Schon seit einiger Zeit forschen Experten der Freiberger Compound Materials GmbH (FCM) und Wissenschaftler vom Fraunhofer THM in Freiberg sowie vom Fraunhofer IISB in Erlangen, einem Mutterinstitut des THM, am HVPE-Verfahren und der Analyse des damit hergestellten Materials. »Es ist den Kollegen in Freiberg gelungen innerhalb kurzer Zeit GaN-Kristalle herzustellen, die bezüglich Kristallgröße, Materialeigenschaften und Herstellungsbedingungen vergleichbar sind mit dem GaN-Material von Wettbewerbern, welche bereits seit über einem Jahrzehnt an dem Material forschen«, erklärt Dr. Jochen Friedrich, stellvertretender Sprecher des THM und Leiter der Abteilung Kristallzüchtung am IISB. »Hauptproblem sind die hohen Herstellungskosten. Diese ergeben sich unter anderem dadurch, dass gegenwärtig nur ein geringer Teil der gasförmigen Ausgangsstoffe, also Galliumchlorid und Ammoniak, an der gewünschten Stelle zu GaN reagiert«, so Dr. Friedrich.

Genau hier setzen jetzt die FCM- und Fraunhofer-Forscher an. In einem gemeinsamen Projekt entwickeln sie das HVPE-Verfahren weiter, so dass eine effizientere Umsetzung der eingesetzten Materialien zu GaN erfolgt. Dadurch können die Herstellungskosten reduziert und die Kommerzialisierung von GaN vorangetrieben werden. Das Verbundprojekt wird durch das Sächsische Staatsministerium für Wissenschaft und Kunst aus Mitteln des Europäischen Fonds für regionale Entwicklung (EFRE) und des Freistaats Sachsen gefördert.

»Als Technologieministerin des Freistaats Sachsen und als Vorsitzende der Arbeitsgruppe Mikroelektronik liegt es mir am Herzen, die Schlüsseltechnologie 'Mikro- und Nanoelektronik' in Sachsen, in Deutschland und in Europa zu stärken. Das vorliegende Vorhaben ist ein ganz konkreter Beitrag zum Ausbau der Innovations- und Wertschöpfungskette und ein großartiges Beispiel für die Stärke der technologieoffenen, anwendungsorientierten Forschung im Freistaat Sachsen und für das erfolgreiche Zusammenwirken von außeruniversitären Forschungseinrichtungen mit sächsischen Unternehmen.«, erklärte Staatsministerin Sabine von Schorlemer, die Ende September persönlich die Zuwendungsbescheide an die Forscher überreichte.

Knapp 3 Jahre haben die Kristallzüchtungsexperten aus Freiberg nun Zeit, um im Rahmen des Verbundvorhabens die Materialeffizienz bei der HVPE-Züchtung von GaN so zu steigern, dass GaN langfristig billiger als Gold werden kann.

Ansprechpartner
Dr. Jochen Friedrich
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-102
info@iisb.fraunhofer.de
www.thm.fraunhofer.de
Fraunhofer THM
Das Fraunhofer-Technologiezentrum Halbleitermaterialien Freiberg (THM) betreibt Forschung und Entwicklung auf dem Gebiet der Halbleitermaterialien für die Photovoltaik und die Mikroelektronik. Das THM ist eine gemeinsame Einrichtung des Fraunhofer-Instituts für Integrierte Systeme und Bauelementetechnologie (IISB) in Erlangen und des Fraunhofer-Instituts für Solare Energiesysteme (ISE) in Freiburg. Es besteht eine enge Kooperation mit der Technischen Universität Bergakademie Freiberg auf dem Gebiet der Halbleiterherstellung und -charakterisierung. Ein Hauptziel ist die Unterstützung der regionalen Halbleitermaterialindustrie durch den Transfer wissenschaftlicher Erkenntnisse in die industrielle Verwertung.

Dr. Jochen Friedrich | Fraunhofer-Institut
Weitere Informationen:
http://www.iisb.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Dem Fettfinger zu Leibe rücken: Neuer Nanolack soll Antifingerprint-Oberflächen schaffen
15.06.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Turbolader für den Lithium-Akku
08.06.2018 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Umwandlung von nicht-neuronalen Zellen in Nervenzellen

18.06.2018 | Biowissenschaften Chemie

Im Fußballfieber: Rittal Cup verspricht Spannung und Spaß

18.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics