Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herstellung von Keramikfolien präzise simulieren

01.06.2015

Hersteller von Keramikfolien sind bislang auf ihre Erfahrung angewiesen, wenn sie die Eigenschaften der Folien einstellen. Nun hilft erstmalig eine Kombination von makro- und mikroskopischer Simulation: Diese sagt vorher, wie der Ausgangsstoff durch die Maschine fließt und berechnet die Ausrichtung der Keramikteilchen.

Tassen, Zahnimplantate, Waschbecken – all diese Dinge bestehen bekanntermaßen aus Keramik. Weniger bekannt ist dagegen, dass das Material auch in Abgas- und Temperatursensoren im Auto verbaut ist, und zwar in Form von Folien.


Unten – makroskopische Simulation: Stromlinien während des Gießprozesses, bei dem der Keramikschlicker rechts eingefüllt wird und links unten als Folie den Gießkasten verlässt. Oben – mikroskopische Simulation: Ausrichtung der Keramikpartikel an zwei Stellen im Prozess.

© Fraunhofer IWM

Hier dienen sie beispielsweise als Trägermaterial für elektrische Leiterbahnen, das extrem hohe Temperaturen aushält. Auch in Filteranlagen kommen pörose Keramikfolien zum Einsatz: So seihen sie etwa in der Lebensmittelindustrie Wasser, Milch, Bier oder Wein. Grundlegend dabei ist es, die Eigenschaften der Folien bei ihrer Produktion genau einzustellen.

Bislang können sich die Hersteller jedoch nur über ihre Erfahrung an die gewünschten Eigenschaften herantasten, denn die teuren Produktionsanlagen laufen Tag und Nacht. Für groß angelegte Versuchsreihen bleibt keine Zeit. Und die Ergebnisse, die kleine Laboranlagen liefern, lassen sich nicht ohne weiteres auf die großen übertragen. Das Einstellen der Keramikfolien-Eigenschaften ist daher ein »Spiel mit vielen Unbekannten«.

Forscher am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg ermöglichen es nun mit einer neuen Kombination von Simulationsmethoden, die Anzahl der Unbekannten im Spiel deutlich zu verringern. Sie können im Computer simulieren, was bei Gießprozessen für Keramikfolien passiert – und zwar sowohl auf makroskopischer als auch auf mikroskopischer Ebene.

Makroskopisch berechnen die Forscher, wie sich die flüssige Keramik, der Keramikschlicker, durch die Maschine bewegt. Mikroskopisch analysieren sie, wie sich die mikrometerfeinen Keramikteilchen im Schlicker und später in der Folie ausrichten. Das ist europaweit einzigartig.

»Mit unserer Software SimPARTIX® können wir den Foliengießprozess auf verschiedenen Größenskalen betrachten und genau untersuchen, wie sich die einzelnen Parameter auf die Eigenschaften der Folie auswirken«, sagt Pit Polfer, Wissenschaftler am IWM. Für die Hersteller heißt das: Sie können die Prozessführung optimieren, den Ausschuss verringern und die Qualität des Produkts verbessern.

Doch zunächst zum Prinzip der Herstellung: Ein Keramikpulver mit unterschiedlichen Partikelgrößen und -formen wird mit Lösungsmitteln und Additiven vermischt, es entsteht ein fließfähiger Gießschlicker. Dieser wird in Gießkästen gefüllt. Der nach unten geöffnete Kasten lässt den Schlicker auf ein Förderband fließen, das sich darunter fortbewegt. Eine Rakel – eine Art am Gießspalt montierter Abstreicher – sorgt dabei für die gewünschte Dicke des abtransportierten Keramikschlickers. Es entsteht eine glatte Schicht, die anschließend getrocknet wird.

Makroskopische und mikroskopische Simulation

Die Forscher simulieren makroskopisch, wie der Keramikschlicker durch die Anlage strömt. Denn welche Eigenschaften die Folie später besitzt, hängt auch von der Geometrie der Anlage ab. Bleibt der Schlicker etwa lange in »toten Winkeln« des Gießkastens hängen, altert er dort. Landet er dann schließlich doch in der Folie, führt dies zu Qualitätseinbußen – und damit zu unerwünschtem Ausschuss.

Die Simulation verrät den Herstellern, wie die Gießkastengeometrie die Strömung des Schlickers beeinflusst. Wo bleibt die flüssige Keramik hängen? Wie ändert sich das Strömungsbild, wenn man die Geometrie der Rakel verändert? So können Keramikhersteller vielversprechende Gießkastengeometrien zunächst virtuell testen und teure reelle Versuchs-Rakel einsparen.

Gekoppelt mit dieser makroskopischen Simulation berechnen die Forscher den Schlicker auch auf der mikroskopischen Ebene – und genau darin liegt die Besonderheit des Systems. So untersuchen sie, wie die einzelnen Keramik-Teilchen sich gegenseitig beeinflussen und wie sie im Raum ausgerichtet sind.

Da es jedoch zu aufwändig wäre, den gesamten Schlicker auf diese Weise zu berechnen, wählen die Forscher verschiedene »Flüssigkeitstropfen« aus dem Material aus. Wie durchlaufen diese Tropfen die Anlage? Wie richten sich die Keramikpartikel in ihnen aus?

»Aus diesen Berechnungen können wir dann auf das Verhalten des gesamten Keramikschlickers rückschließen«, sagt Polfer. So ist es möglich, die Ausrichtung der Partikel oder Größengradienten in der Folie einzustellen, um etwa Spezialanwendungen gezielter herstellen zu können.

Katharina Hien | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2015/Juni/herstellung-von-keramikfolien-praezise-simulieren.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften