Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haften auf rauen Oberflächen

22.08.2011
Die kleinen gelben Haftnotiz-Zettel sind gängige Begleiter im Büroalltag; sie kleben besonders gut auf glatten Oberflächen wie Fenstern, Spiegeln oder Bildschirmen.

Geckos, Insekten und Spinnen können es noch besser: sie kleben und laufen an Wänden und Decken. Härchen an ihren Füßen lassen die Tiere nicht nur auf Glas und glatten Flächen kopfüber „kleben“. Weil die Härchen sich immer feiner verzweigen, gehen Geckos auch auf Raufaser die Wand hoch. Am INM - Leibniz-Institut für Neue Materialien bilden die Wissenschaftler nun solche „hierarchischen“ Strukturen künstlich nach. Sie wollen damit das Haften speziell auf rauen Oberflächen weiter untersuchen.


Die verzweigten Härchen des Geckos sind Vorbild für hierarchische Mikrostrukturen. Foto frei nur in Zusammenhang mit dieser Meldung; Quelle: Bellhäuser

Im Wesentlichen ist das Haftprinzip erkannt. Es beruht darauf, dass viele dünne Härchen besser haften als ein dickes Haar. Jedoch spielt der Untergrund eine entscheidende Rolle: Bei seinen Streifzügen braucht der Gecko mal die gröberen und mal die feineren Härchen, um gut zu haften und sich auch schnell wieder abzulösen. „Stellen Sie sich einen Besen vor, bei dem sich die Borsten immer feiner und dünner nach unten verzweigen“ erklärt Tobias Kraus, Leiter der Juniorforschungsgruppe „Strukturbildung auf kleinen Skalen“. „Große Steine kehren Sie mit den groben Borsten weg. Um feinen Staub oder Sand zu entfernen, kehren sie mit weniger Druck, damit die feinen Borsten den Staub erwischen“ so Kraus weiter.

Ähnlich ist es auch beim Gecko: Für feine Unebenheiten nutzt er feine Härchen, bei groben Unebenheiten helfen ihm die groben Härchen darunter.

Die Forscher werden die Strukturen dazu mit extra entwickelten Messmethoden auf ihre Klebkraft prüfen. Um zu verstehen, warum hierarchische Strukturen besser haften, nutzen sie auch computergestützte Modelle. „Wir wollen in diesem Projekt herausfinden, wie man hierarchische Strukturen am besten herstellen kann und austesten, was diese Strukturen können – damit verstehen wir, warum Haftung auf rauen Oberflächen überhaupt möglich ist“, erklärt Eduart Arzt, wissenschaftlicher Geschäftsführer des INM und Leiter des Programmbereichs „Funktionelle Oberflächen“.

„Beim heutigen Stand der Technik ist es kein Problem mehr, Strukturen mit nur einer „Borstengröße“ herzustellen“ sagt Arzt. Dazu verwenden die Wissenschaftler ein Abguss-Verfahren. Ein flüssiger Kunststoff wird in die Negativ-Form der „Borsten“ eingefüllt und wird hart. Der fertige Abguss wird dann aus der Form herausgelöst. Das Ergebnis ist eine Oberfläche auf der gleichgroße „Borsten“ regelmäßig angeordnet sind. Dabei ist jede Borste ungefähr so groß wie zehn Grippe-Viren.

Auch die Verzweigungen in noch feinere Borsten wollen die Forscher mit diesem Verfahren herstellen. „Die Herausforderung besteht darin, diese feinsten Verzweigungen in der Negativform gleichmäßig eng hinzubekommen“ sagt der Chemie-Ingenieur Kraus. Deshalb nutzen die Wissenschaftler Nanopartikel verschiedener Größen und ätzen damit die Kanäle, die später zu Borsten werden. Nachdem größere Partikel große Kanäle geätzt haben, werden in diese Kanäle kleinere Nanopartikel eingebracht, die dann die nächste Stufe in die großen hineinätzen. Dabei sind die kleinsten Nanopartikel im Vergleich zu einem Fußball so groß, wie ein Fußball im Vergleich zur Erde. Beginnend mit der dicksten Borste erhalten die Forscher so Schicht um Schicht immer feinere Verzweigungen.

Hintergrund:
Das Projekt „Adhesion mechanisms in micropatterned dry adhesives with hierarchical structure“ ist eines von 14 Projekten, das die Deutsche Forschungsgemeinschaft (DFG) in ihrem Schwerpunktprogramm "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials" (SPP 1420) fördert. In diesem Programm arbeiten führende Gruppen aus Deuschland daran, die besonderen Eigenschaften von natürlichen Materialien zu verstehen und nachzuahmen, die durch hierarchische Strukturen entstehen.

Neben elf Mitarbeitern des INM sind weitere hochkarätige internationale Wissenschaftler aus den USA sowie ein Humboldt-Stipendiat aus Indien beteiligt. Die DFG fördert das Projekt mit einem Volumen von rund 250.000 Euro auf zwei Jahre. Es startete Anfang August 2011.

Ansprechpartner:

Dr. Tobias Kraus
INM - Leibniz-Institut für Neue Materialien gGmbH
Tel: (+49) 681 930 389
Tobias.kraus@inm-gmbh.de
Prof. Dr. Eduard Arzt
INM - Leibniz-Institut für Neue Materialien gGmbH
Tel.: (+49) 681 9300 500
Eduard.arzt@inm-gmbh.de
Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung folgen sie den wiederkehrenden Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig nutzen?

Das INM - Leibniz-Institut für Neue Materialien gGmbH mit Sitz in Saarbrücken ist ein international sichtbares Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und beschäftigt rund 190 Mitarbeiter. Seine Forschung gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de/

Weitere Berichte zu: Borsten DFG Gecko Härchen Nanopartikel Unebenheit Verzweigungen

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungsnachrichten

Aus dem Labor auf die Schiene: Forscher des HI-ERN planen Wasserstoffzüge mit LOHC-Technologie

19.04.2018 | Verkehr Logistik

Neuer Wirkmechanismus von Tumortherapeutikum entdeckt

19.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics