Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haften auf rauen Oberflächen

22.08.2011
Die kleinen gelben Haftnotiz-Zettel sind gängige Begleiter im Büroalltag; sie kleben besonders gut auf glatten Oberflächen wie Fenstern, Spiegeln oder Bildschirmen.

Geckos, Insekten und Spinnen können es noch besser: sie kleben und laufen an Wänden und Decken. Härchen an ihren Füßen lassen die Tiere nicht nur auf Glas und glatten Flächen kopfüber „kleben“. Weil die Härchen sich immer feiner verzweigen, gehen Geckos auch auf Raufaser die Wand hoch. Am INM - Leibniz-Institut für Neue Materialien bilden die Wissenschaftler nun solche „hierarchischen“ Strukturen künstlich nach. Sie wollen damit das Haften speziell auf rauen Oberflächen weiter untersuchen.


Die verzweigten Härchen des Geckos sind Vorbild für hierarchische Mikrostrukturen. Foto frei nur in Zusammenhang mit dieser Meldung; Quelle: Bellhäuser

Im Wesentlichen ist das Haftprinzip erkannt. Es beruht darauf, dass viele dünne Härchen besser haften als ein dickes Haar. Jedoch spielt der Untergrund eine entscheidende Rolle: Bei seinen Streifzügen braucht der Gecko mal die gröberen und mal die feineren Härchen, um gut zu haften und sich auch schnell wieder abzulösen. „Stellen Sie sich einen Besen vor, bei dem sich die Borsten immer feiner und dünner nach unten verzweigen“ erklärt Tobias Kraus, Leiter der Juniorforschungsgruppe „Strukturbildung auf kleinen Skalen“. „Große Steine kehren Sie mit den groben Borsten weg. Um feinen Staub oder Sand zu entfernen, kehren sie mit weniger Druck, damit die feinen Borsten den Staub erwischen“ so Kraus weiter.

Ähnlich ist es auch beim Gecko: Für feine Unebenheiten nutzt er feine Härchen, bei groben Unebenheiten helfen ihm die groben Härchen darunter.

Die Forscher werden die Strukturen dazu mit extra entwickelten Messmethoden auf ihre Klebkraft prüfen. Um zu verstehen, warum hierarchische Strukturen besser haften, nutzen sie auch computergestützte Modelle. „Wir wollen in diesem Projekt herausfinden, wie man hierarchische Strukturen am besten herstellen kann und austesten, was diese Strukturen können – damit verstehen wir, warum Haftung auf rauen Oberflächen überhaupt möglich ist“, erklärt Eduart Arzt, wissenschaftlicher Geschäftsführer des INM und Leiter des Programmbereichs „Funktionelle Oberflächen“.

„Beim heutigen Stand der Technik ist es kein Problem mehr, Strukturen mit nur einer „Borstengröße“ herzustellen“ sagt Arzt. Dazu verwenden die Wissenschaftler ein Abguss-Verfahren. Ein flüssiger Kunststoff wird in die Negativ-Form der „Borsten“ eingefüllt und wird hart. Der fertige Abguss wird dann aus der Form herausgelöst. Das Ergebnis ist eine Oberfläche auf der gleichgroße „Borsten“ regelmäßig angeordnet sind. Dabei ist jede Borste ungefähr so groß wie zehn Grippe-Viren.

Auch die Verzweigungen in noch feinere Borsten wollen die Forscher mit diesem Verfahren herstellen. „Die Herausforderung besteht darin, diese feinsten Verzweigungen in der Negativform gleichmäßig eng hinzubekommen“ sagt der Chemie-Ingenieur Kraus. Deshalb nutzen die Wissenschaftler Nanopartikel verschiedener Größen und ätzen damit die Kanäle, die später zu Borsten werden. Nachdem größere Partikel große Kanäle geätzt haben, werden in diese Kanäle kleinere Nanopartikel eingebracht, die dann die nächste Stufe in die großen hineinätzen. Dabei sind die kleinsten Nanopartikel im Vergleich zu einem Fußball so groß, wie ein Fußball im Vergleich zur Erde. Beginnend mit der dicksten Borste erhalten die Forscher so Schicht um Schicht immer feinere Verzweigungen.

Hintergrund:
Das Projekt „Adhesion mechanisms in micropatterned dry adhesives with hierarchical structure“ ist eines von 14 Projekten, das die Deutsche Forschungsgemeinschaft (DFG) in ihrem Schwerpunktprogramm "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials" (SPP 1420) fördert. In diesem Programm arbeiten führende Gruppen aus Deuschland daran, die besonderen Eigenschaften von natürlichen Materialien zu verstehen und nachzuahmen, die durch hierarchische Strukturen entstehen.

Neben elf Mitarbeitern des INM sind weitere hochkarätige internationale Wissenschaftler aus den USA sowie ein Humboldt-Stipendiat aus Indien beteiligt. Die DFG fördert das Projekt mit einem Volumen von rund 250.000 Euro auf zwei Jahre. Es startete Anfang August 2011.

Ansprechpartner:

Dr. Tobias Kraus
INM - Leibniz-Institut für Neue Materialien gGmbH
Tel: (+49) 681 930 389
Tobias.kraus@inm-gmbh.de
Prof. Dr. Eduard Arzt
INM - Leibniz-Institut für Neue Materialien gGmbH
Tel.: (+49) 681 9300 500
Eduard.arzt@inm-gmbh.de
Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung folgen sie den wiederkehrenden Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig nutzen?

Das INM - Leibniz-Institut für Neue Materialien gGmbH mit Sitz in Saarbrücken ist ein international sichtbares Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und beschäftigt rund 190 Mitarbeiter. Seine Forschung gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de/

Weitere Berichte zu: Borsten DFG Gecko Härchen Nanopartikel Unebenheit Verzweigungen

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie