Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Gummimetalle“ ebnen den Weg für neue Anwendungen

01.02.2017

Max-Planck Wissenschaftler entdecken Besonderheit in Kristallstruktur von Titanlegierung

Ein Metall das sich Kaugummi-artig verbiegen lässt und somit den Weg für neue industrielle Anwendungen zum Beispiel in der Luftfahrt eröffnet. Solche „Gummimetalle“ existieren, doch war der Mechanismus hinter diesem einzigartigen Verhalten bisher ungeklärt.


Rasterelektronenmikroskop-Aufnahme der verschiedenen Phasen in der untersuchten "gummiartigen" Titanlegierung.

Jian Zhang, Max-Planck-Institut für Eisenforschung GmbH


Schematische Darstellung der Titanlegierung. Zu sehen ist die Kristallstruktur der verschiedenen Phasen während der Wärmebehandlung.

Jian Zhang, Max-Planck-Institut für Eisenforschung GmbH

Wissenschaftler vom Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf haben einen neuen Phasenübergang in einer Titanlegierung beobachtet, der genau dieses Verhalten erklären könnte. Dabei ist eine Phase eine Kristallstruktur, in der die Atome in einem Metall angeordnet sind.

Die Materialwissenschaftler vom MPIE untersuchten mittels Röntgenlicht die innere Struktur einer speziellen Materialkombination aus Titan, Niob, Tantal und Zirconium. Diese Titanlegierung zeigt bei mechanischen Belastungen ein interessantes Verhalten: „Bei Verformung wird sie nicht, wie sonst bei Metallen üblich, härter oder bricht, sondern verbiegt sich fast schon honigartig. Wissenschaftlich ausgedrückt hat sie eine sehr niedrige elastische Steifigkeit und eine hohe plastische Formbarkeit“, erklärt Dierk Raabe, Direktor am MPIE.

Das macht die Legierung attraktiv für verschiedene industrielle Anwendungen. In der Luftfahrt beispielsweise kann sie als eine Art Crashabsorber verwendet werden. „Wenn eine Flugzeugturbine durch Hagel- oder Vogelschlag beschädigt wird, besteht die Gefahr, dass einzelne Bauteile zersplittern und in der Folge auch den Flugzeugrumpf beschädigen könnten. Wenn Teile der Schutzhülle einer Turbine beispielsweise aus einem solchen ,gum metal‘ bestehen würden, könnten sie umherfliegende Splitter abfangen, da sie durch die Belastung nicht zerstört werden, sondern sich nur verformen“, sagt Raabe

Die Forscher haben mit verschiedenen Untersuchungsmethoden wie Röntgenstrahlung, Transmissionselektronenmikroskopie und Atomsondentomographie die Besonderheiten in der Nanostruktur zeigen können. Titanlegierungen kommen normalerweise in zwei verschiedenen Phasen vor. Bei Raumtemperatur sind die Atome meist in der sogenannten Alpha-Phase angeordnet, bei hohen Temperaturen in der Beta-Phase. Je nach Phase zeigen die Metalle unterschiedliche Eigenschaften. Die Gummimetalle bestehen vor allem aus der Beta-Phase, die in diesen Legierungen auch bei Raumtemperatur stabil ist.

Mittels Röntgenstrahlung im Teilchenbeschleuniger DESY konnten die Wissenschaftler die Kristallstruktur der Legierung während des Übergangs genau untersuchen. „Wenn man eine Probe mit Röntgenstrahlung beschießt, wird die Strahlung durch das Kristallgitter abgelenkt. Dadurch ergibt sich ein bestimmtes Muster, ein sogenanntes Diffraktogramm, aus dem wir dann ableiten können, wie die Atome positioniert sind, also welche Kristallstruktur sie einnehmen“, erklärt DESY-Forscherin Ann-Christin Dippel, die die Untersuchungen mit Röntgenstrahlung an der DESY-Messstation betreut hat.

Die Forscher des MPIE haben so einen neuen Mechanismus beim Phasenübergang entdeckt. Das Team um den Ingenieur Jian Zhang vom MPIE hat eine neue Struktur beobachtet, die bei der Transformation von Beta- zu Alpha-Phase entsteht: die Omega-Phase. Wenn die Beta-Phase von einer hohen Temperatur schnell abgekühlt wird, ändert ein Teil der Atome die Position und geht in die energetisch günstigere Alpha-Phase über. Durch die Bewegung der Atome entsteht eine mechanische Spannung an der Phasengrenze, die verschiedenen Phasen zerren sozusagen aneinander. Wenn diese Spannung einen kritischen Wert übersteigt, entsteht eine neue Anordnung, genannt Omega-Phase.

„Diese neu entdeckte Struktur entsteht nur durch die Scherspannung, die beim Phasenübergang aufgebaut wird, und erleichtert die Umwandlung von Alpha- zu Beta-Phase. Sie kann nur zwischen zwei anderen Phasen bestehen, da sie durch diese stabilisiert wird“, berichtet Raabe. Wenn die Spannung durch die neue Schicht wieder unter den kritischen Wert fällt, entsteht aufs Neue eine Schicht Alpha-Phase, an die sich dann wieder eine Omega-Phase anschließt.

So entsteht eine Mikrostruktur aus vielen, zum Teil atomar schmalen Schichten mit jeweils anderer Struktur. Der Übergang findet auch bei statischen Belastungen statt und ist vollständig umkehrbar. Die Forscher hoffen jetzt, dass die neu entdeckte Struktur dabei helfen könnte, die Eigenschaften des Werkstoffs noch genauer zu verstehen und später neue, verbesserte Varianten der Titanlegierung zu entwickeln.

Das Team um Hauptautor Jian Zhang vom MPIE stellt seine Ergebnisse in der Fachzeitschrift „Nature Communications“ vor. An der Arbeit waren auch die Xi'an-Jiaotong-Universität in China sowie das Massachusetts Institute of Technology in den USA beteiligt.

Originalpublikation:
J. Zhang, C.C. Tasan, M.J. Lai, A-C. Dippel, D. Raabe: Complexion-mediated martensitic phase transformation in Titanium. Nature Communications, 8, 2017; DOI: 10.1038/ncomms14210

Weitere Informationen:

http://www.mpie.de

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Metamaterial mit Dreheffekt
24.11.2017 | Karlsruher Institut für Technologie

nachricht CAU-Forschungsteam entwickelt neues Verbundmaterial aus Kohlenstoffnanoröhren
22.11.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie