Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Gummimetalle“ ebnen den Weg für neue Anwendungen

01.02.2017

Max-Planck Wissenschaftler entdecken Besonderheit in Kristallstruktur von Titanlegierung

Ein Metall das sich Kaugummi-artig verbiegen lässt und somit den Weg für neue industrielle Anwendungen zum Beispiel in der Luftfahrt eröffnet. Solche „Gummimetalle“ existieren, doch war der Mechanismus hinter diesem einzigartigen Verhalten bisher ungeklärt.


Rasterelektronenmikroskop-Aufnahme der verschiedenen Phasen in der untersuchten "gummiartigen" Titanlegierung.

Jian Zhang, Max-Planck-Institut für Eisenforschung GmbH


Schematische Darstellung der Titanlegierung. Zu sehen ist die Kristallstruktur der verschiedenen Phasen während der Wärmebehandlung.

Jian Zhang, Max-Planck-Institut für Eisenforschung GmbH

Wissenschaftler vom Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf haben einen neuen Phasenübergang in einer Titanlegierung beobachtet, der genau dieses Verhalten erklären könnte. Dabei ist eine Phase eine Kristallstruktur, in der die Atome in einem Metall angeordnet sind.

Die Materialwissenschaftler vom MPIE untersuchten mittels Röntgenlicht die innere Struktur einer speziellen Materialkombination aus Titan, Niob, Tantal und Zirconium. Diese Titanlegierung zeigt bei mechanischen Belastungen ein interessantes Verhalten: „Bei Verformung wird sie nicht, wie sonst bei Metallen üblich, härter oder bricht, sondern verbiegt sich fast schon honigartig. Wissenschaftlich ausgedrückt hat sie eine sehr niedrige elastische Steifigkeit und eine hohe plastische Formbarkeit“, erklärt Dierk Raabe, Direktor am MPIE.

Das macht die Legierung attraktiv für verschiedene industrielle Anwendungen. In der Luftfahrt beispielsweise kann sie als eine Art Crashabsorber verwendet werden. „Wenn eine Flugzeugturbine durch Hagel- oder Vogelschlag beschädigt wird, besteht die Gefahr, dass einzelne Bauteile zersplittern und in der Folge auch den Flugzeugrumpf beschädigen könnten. Wenn Teile der Schutzhülle einer Turbine beispielsweise aus einem solchen ,gum metal‘ bestehen würden, könnten sie umherfliegende Splitter abfangen, da sie durch die Belastung nicht zerstört werden, sondern sich nur verformen“, sagt Raabe

Die Forscher haben mit verschiedenen Untersuchungsmethoden wie Röntgenstrahlung, Transmissionselektronenmikroskopie und Atomsondentomographie die Besonderheiten in der Nanostruktur zeigen können. Titanlegierungen kommen normalerweise in zwei verschiedenen Phasen vor. Bei Raumtemperatur sind die Atome meist in der sogenannten Alpha-Phase angeordnet, bei hohen Temperaturen in der Beta-Phase. Je nach Phase zeigen die Metalle unterschiedliche Eigenschaften. Die Gummimetalle bestehen vor allem aus der Beta-Phase, die in diesen Legierungen auch bei Raumtemperatur stabil ist.

Mittels Röntgenstrahlung im Teilchenbeschleuniger DESY konnten die Wissenschaftler die Kristallstruktur der Legierung während des Übergangs genau untersuchen. „Wenn man eine Probe mit Röntgenstrahlung beschießt, wird die Strahlung durch das Kristallgitter abgelenkt. Dadurch ergibt sich ein bestimmtes Muster, ein sogenanntes Diffraktogramm, aus dem wir dann ableiten können, wie die Atome positioniert sind, also welche Kristallstruktur sie einnehmen“, erklärt DESY-Forscherin Ann-Christin Dippel, die die Untersuchungen mit Röntgenstrahlung an der DESY-Messstation betreut hat.

Die Forscher des MPIE haben so einen neuen Mechanismus beim Phasenübergang entdeckt. Das Team um den Ingenieur Jian Zhang vom MPIE hat eine neue Struktur beobachtet, die bei der Transformation von Beta- zu Alpha-Phase entsteht: die Omega-Phase. Wenn die Beta-Phase von einer hohen Temperatur schnell abgekühlt wird, ändert ein Teil der Atome die Position und geht in die energetisch günstigere Alpha-Phase über. Durch die Bewegung der Atome entsteht eine mechanische Spannung an der Phasengrenze, die verschiedenen Phasen zerren sozusagen aneinander. Wenn diese Spannung einen kritischen Wert übersteigt, entsteht eine neue Anordnung, genannt Omega-Phase.

„Diese neu entdeckte Struktur entsteht nur durch die Scherspannung, die beim Phasenübergang aufgebaut wird, und erleichtert die Umwandlung von Alpha- zu Beta-Phase. Sie kann nur zwischen zwei anderen Phasen bestehen, da sie durch diese stabilisiert wird“, berichtet Raabe. Wenn die Spannung durch die neue Schicht wieder unter den kritischen Wert fällt, entsteht aufs Neue eine Schicht Alpha-Phase, an die sich dann wieder eine Omega-Phase anschließt.

So entsteht eine Mikrostruktur aus vielen, zum Teil atomar schmalen Schichten mit jeweils anderer Struktur. Der Übergang findet auch bei statischen Belastungen statt und ist vollständig umkehrbar. Die Forscher hoffen jetzt, dass die neu entdeckte Struktur dabei helfen könnte, die Eigenschaften des Werkstoffs noch genauer zu verstehen und später neue, verbesserte Varianten der Titanlegierung zu entwickeln.

Das Team um Hauptautor Jian Zhang vom MPIE stellt seine Ergebnisse in der Fachzeitschrift „Nature Communications“ vor. An der Arbeit waren auch die Xi'an-Jiaotong-Universität in China sowie das Massachusetts Institute of Technology in den USA beteiligt.

Originalpublikation:
J. Zhang, C.C. Tasan, M.J. Lai, A-C. Dippel, D. Raabe: Complexion-mediated martensitic phase transformation in Titanium. Nature Communications, 8, 2017; DOI: 10.1038/ncomms14210

Weitere Informationen:

http://www.mpie.de

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Dem Fettfinger zu Leibe rücken: Neuer Nanolack soll Antifingerprint-Oberflächen schaffen
15.06.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Turbolader für den Lithium-Akku
08.06.2018 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

Meteoriteneinschläge und Spektralfarben: HITS bei Explore Science 2018

11.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics