Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Günstigeres Hochleistungsmaterial aus natürlichen Stoffen

05.02.2014
Ein Team mit Freiburger Wissenschaftlern entwickelt ein neues Verfahren zur Herstellung von Carbonfasern

Das Projekt „Renewable source nanostructured precursors for carbon fibers“, kurz Carboprec, erhält von der Europäischen Kommission in den kommenden vier Jahren eine Förderung von etwa sechs Millionen Euro.


Die nachwachsenden Rohstoffe Lignin (braun) und Zellulose (weiß).
Quelle: Ricarda Böhm

14 Partner aus Forschung und Industrie aus sieben europäischen Ländern und Russland sind daran beteiligt, darunter die Universität Freiburg sowie der französische Automobilhersteller Renault. Koordinator ist das französische Chemieunternehmen Arkema. Marie-Pierre Laborie, Professorin für Forstliche Biomaterialien am Institut für Geo- und Umweltnaturwissenschaften, leitet das Projekt am Freiburger Materialforschungszentrum (FMF) der Albert-Ludwigs-Universität. Der Freiburger Anteil an der Fördersumme beträgt mehr als 670.000 Euro. Die Europäische Kommission unterstützt das Projekt in ihrem Siebten Rahmenprogramm.

Rennwagen, Flugzeuge, Raumfähren – in diesen und vielen weiteren Produkten stecken Bauteile aus Carbonfasern. Diese Fasern aus kohlenstoffhaltigen Ausgangsmaterialien sind besonders leicht und leistungsfähig. Polyacrylnitril (PAN) dient als Ausgangsstoff für etwa 80 Prozent der derzeit auf dem Markt erhältlichen Carbonfasern. Der Werkstoff eignet sich aufgrund seiner Eigenschaften besonders für die industrielle Produktion. Die Kosten für PAN sowie für dessen Verarbeitung sind allerdings hoch, die daraus hergestellten Fasern entsprechend teuer.

In dem Projekt Carboprec wollen Forscherinnen und Forscher neue Ausgangsstoffe und Verarbeitungsprozesse entwickeln. Ziel ist es, eine kostengünstigere und umweltfreundlichere Alternative zu PAN zu finden, die gleichwertige Eigenschaften besitzt. Lignin und Zellulose sind natürliche Werkstoffe aus Pflanzen und zählen zu den am häufigsten vorkommenden nachwachsenden Rohstoffen. So genannte Kohlenstoffnanoröhrchen sollen die Ausgangsstoffe verstärken, damit sie sich besser verarbeiten lassen und die Fasern stabiler sind. Die Projektpartner erforschen, aus welcher der beiden pflanzlichen Alternativen und mit welchem Verfahren sie ein Endprodukt mit den besten Eigenschaften gewinnen können. Die beteiligten Unternehmen sollen das Material anschließend testen.

Das Freiburger Team will unter anderem feststellen, wie sich die verschiedenen chemischen Elemente von Lignin, Zellulose und der Kohlenstoffnanoröhrchen am besten vermischen lassen. Dazu werden sie Proben von Lignin und Zellulose mit verschiedenen molekularen Charakteristika auf ihre Struktur und ihre Eigenschaften hin untersuchen. Außerdem erforschen sie, wie groß die Neigung der verschiedenen Stoffe ist, sich mit Kohlenstoffnanoröhren zu verbinden. Die Wissenschaftlerinnen und Wissenschaftler wollen Leitsätze dazu erarbeiten, wie sich eine Faser mit optimalen Eigenschaften und hoher Qualität herstellen lässt.

Kontakt:
Prof. PhD Marie-Pierre Laborie
Institut für Geo- und Umweltnaturwissenschaften /
Freiburger Materialforschungszentrum
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203- 97617
Fax: 0761/203- 3763
E-Mail: marie-pierre.laborie@fobawi.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Aufgewärmt am Start
05.12.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik