Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

An der Grenze der Reibung

19.12.2011
Genaue Einblicke, wie zwei mikroskopische Flächen übereinander gleiten, könnten helfen, reibungsarme Oberflächen herzustellen

Das Problem gibt es im Großen wie im Kleinen, und schon den alten Ägyptern machte es zu schaffen. Doch während Physiker die Reibung etwa eines Steinquaders, den Arbeiter zu einer Pyramide ziehen, bereits seit längerem gut verstehen, können sie Reibung in mikroskopischen Dimensionen erst jetzt im Detail erklären.


Reibung in Raten: Wenn zwei mikroskopische Flächen mit gleicher Struktur übereinander gleiten, bewegen sich nicht alle Teilchen gleichzeitig. Vielmehr rutschen die Partikel in einzelnen Bereichen (blaue Kugeln), wobei ihre Anordnung verzerrt wird. Die anderen Teilchen(grün) bleiben dagegen in den Mulden der Oberfläche sitzen. © Thomas Bohlein/Ingrid Schofron

Forscher der Universität Stuttgart und des Max-Planck-Instituts für intelligente Systeme ebenfalls in Stuttgart haben in einem ausgeklügelten Experiment eine Lage regelmäßig angeordneter Kunststoffkügelchen über einen künstlichen Kristall aus Licht gezogen. Auf diese Weise konnten sie im Detail beobachten, wie die Schicht der Kügelchen über den Lichtkristall glitt. Anders als man intuitiv vermuten könnte, bewegen sich die Kügelchen dabei nicht alle gemeinsam. Vielmehr gleiten immer nur einige von ihnen, während die anderen auf ihren Plätzen sitzenbleiben. Diese Beobachtung bestätigt theoretische Voraussagen und erklärt auch, warum die Reibung zwischen mikroskopischen Oberflächen von ihrer atomaren Struktur abhängt.

Reibung bringt der Wirtschaft immense Verluste, ganz ohne Reibung liefe aber gar nichts mehr: Auf etwa acht Prozent des Bruttoinlandprodukts – das sind in Deutschland rund 200 Milliarden Euro – werden die Kosten geschätzt, die etwa durch den Verschleiß aufeinander reibender Maschinenteile verursacht werden. Und dass aneinander reibende Erdplatten in manchen Ländern durch Erdbeben schwere Schäden verursachen, ist dabei noch nicht berücksichtigt. Wenn jedoch Reifen oder Schuhsohlen nicht auf dem Boden haften würden, kämen weder Räder noch Füße voran. Die Faktoren, die bei diesen Beispielen für Reibung zwischen großen Objekten dominieren, haben Physiker bereits seit einiger Zeit recht gut verstanden. Entscheidend sind dabei nämlich die unzähligen kleinen Unebenheiten, die es auf jeder Oberfläche gibt. Sie bewirken, dass sich zwei ausgedehnte Oberflächen immer nur an einzelnen Punkten berühren.

Ganz anders ist das, wenn zwei mikroskopisch kleine Flächen aufeinander reiben. Sie berühren sich – wenn sie entsprechend akkurat gearbeitet sind – mit allen Atomen ihrer Oberfläche. Wie Reibung auf dieser atomaren Ebene stattfindet, haben Stuttgarter Forscher nun erstmals beobachtet. Sie können in ihrem Experiment auch nachvollziehen, warum Oberflächen mit gleicher Struktur stärker aufeinander reiben als solche mit unterschiedlicher Struktur. „Wir schaffen so die Basis, möglichst reibungsarme Mikro- und Nanomaschinen zu konstruieren“, sagt Clemens Bechinger, Professor an der Universität Stuttgart und Fellow des Max-Planck-Instituts für intelligente Systeme.

Verzerrungen der Oberfläche schaffen Bewegung
Sein Team hat aus Laserlicht und elektrisch geladenen Kunststoffkügelchen in einem Wasserbad ein zweidimensionales Modell für zwei aufeinander reibende Oberflächen geschaffen. Da sich die in dem Wasser schwebenden Kügelchen elektrisch abstoßen, ordnen sie sich in einer periodisch geordneten Schicht an. Sie bilden die eine Oberfläche. Die andere Oberfläche erzeugten die Forscher unter der Schicht der Kügelchen mit intensiven Laserstahlen. Deren elektromagnetische Wellen überlagern sie so, dass sich ein Lichtkristall, eine Art optischer Eierkarton bildet. „Die Verwendung einer durch Licht erzeugten Oberfläche ermöglicht es uns erstmals, die Vorgänge an reibenden Flächen direkt mit einer Kamera zu beobachten“, sagt Thomas Bohlein, der das Experiment im Rahmen seiner Doktorarbeit vorgenommen hat. „In Experimenten mit dreidimensionalen Objekten ist das nicht möglich, weil die Grenzschicht nicht zu sehen ist.“

Zunächst stimmte Thomas Bohlein den Abstand der Mulden in dem optischen Eierkarton genau auf den Abstand der Kunststoffkügelchen ab. Eigentlich könnte man vermuten, dass die Flächen sich ruckartig voneinander lösen und neu ineinander einrasten würden, so als würde man versuchen zwei ineinander sitzende Eierkartons übereinander zu ziehen.

Im Experiment zeigte sich allerdings ein anderer Mechanismus. Als das Team die Kunststoff-Kugeln über die optische Oberfläche zog, fingen nicht alle Kügelchen gleichzeitig an zu rutschen, vielmehr bewegten sich die Partikel nur in einzelnen Bereichen. In diesen Arealen verließen die Kügelchen ihre komfortablen Mulden und rückten zudem ein wenig zusammen. Möglich ist das, weil die Kügelchen, aber auch die Atome in einer Oberfläche nicht wie betoniert nebeneinander sitzen, sondern immer ein bisschen Spielraum haben. Die durch den Zug hervorgerufenen Verzerrungen der Kugel- oder Atomschicht passen dann einfach nicht mehr genau auf die Oberfläche des optischen Kristalls. Das machte es viel einfacher, die Teilchen aus ihren Mulden zu ziehen.

Oberflächen mit unterschiedlicher Struktur gleiten besser
Während die Forscher an der Teilchenlage ziehen, wandern die gestauchten Zonen durch die Kugelschicht, wobei sich nur die Teilchen in diesen Zonen aus ihren Mulden lösen können. „Für die gesamte Lage ist es effizienter, eine Verzerrungszone sukzessive durch die Schicht wandern zu lassen, als alle Kugeln gleichzeitig von einer Mulde zur nächsten zu bewegen“, sagt Clemens Bechinger. Die gestauchten Gebiete, die in Richtung der ziehenden Kraft über die optische Oberfläche wanderten, wurde umso größer, je stärker das Team an der Lage der Kunststoff-Kügelchen zog.

Im nächsten Experiment schoben die Stuttgarter Physiker die Mulden des optischen Eierkartons etwas enger zusammen, so dass dieser von vorne herein schlechter mit der Anordnung der Kunststoff-Kügelchen übereinstimmte. „Dadurch finden weniger Teilchen einen Platz in einer Mulden, und die Verzerrungszonen lassen sich deutlich einfacher über die Oberfläche bewegen“, sagt Thomas Bohlein.

Dass lokale Verzerrungen – Physiker sprechen hierbei von kinks und antikinks – bei der Reibung zwischen mikroskopischen Oberflächen die entscheidende Rolle spielen, hatten Physiker schon vermutet. „Wir haben diese Veränderungen in der Oberfläche jetzt aber zum ersten Mal experimentell beobachtet“, sagt Clemens Bechinger. „Damit haben wir die theoretischen Vorhersagen über den Reibungsmechanismus in atomaren Dimensionen bestätigt.“

Reibungslos gleitende Oberflächen werden denkbar
Die Stuttgarter Forscher gingen aber noch einen Schritt weiter. Kaum eine Vorstellung hatten Physiker nämlich, wie eine kristalline auf einer quasikristallinen Oberfläche reibt. Quasikristalle, für deren Entdeckung Shechtman in diesem Jahr den Chemie-Nobelpreis erhielt, weisen kleine Bereiche mit einer strengen Ordnung auf. Diese wiederholt sich in größeren Dimensionen aber nicht regelmäßig wie in einem echten Kristall.

Einen Quasikristall formte Thomas Bohlein nun unter der kristallinen Lage der Kunststoff-Kügelchen, indem er wiederum die Laserstrahlen geschickt überlagerte. In den Mulden auf der quasikristallinen Oberfläche kamen die Kunststoff-Kügelchen nur noch selten zu liegen, und die Reibung reduzierte sich verglichen mit zwei kristallinen Oberflächen drastisch. „Unser Experiment liefert den Beweis, dass die Reibung auf quasikristallinen Oberflächen unter anderem deshalb so gering ist, weil die Strukturen nicht zueinander passen“, sagt Thomas Bohlein.

Die Erkenntnisse, wie Reibung im Mikro-Maßstab funktioniert, könnten auch praktische Konsequenzen haben. „Vor allem die Kombination einer kristallinen und einer quasikristallinen Oberfläche bietet die Möglichkeit die Reibung in Mikro- und Nano-Systemen zu reduzieren“, sagt Clemens Bechinger. „Denkbar ist aber auch, Oberflächen so zu gestalten, dass diese nahezu reibungslos übereinander gleiten.“

Ansprechpartner
Prof. Dr. Clemens Bechinger
Universität Stuttgart
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 685-65218
Fax: +49 711 685-65285
E-Mail: c.bechinger@physik.uni-stuttgart.de
Originalveröffentlichung
Thomas Bohlein, Jules Mikhael und Clemens Bechinger
Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces

Nature Materials, published online: 18. Dezember 2011; DOI: 10.1038/NMAT3204

Prof. Dr. Clemens Bechinger | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4733701/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wie wirksam sind Haftvermittler? Fraunhofer nutzt Flüssigkeitschromatographie zur Charakterisierung
17.10.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dem Lichtstrahl auf die Sprünge geholfen
21.07.2016 | SCHOTT AG

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik