Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Green Tech: Spezialstrahler sparen Energie

30.03.2010
  • Infrarot-Strahler trocknen gezielt und sparen so Energie
  • UV-Lampen mit intelligenter Energieversorgung härten Farbe schnell und sparen dennoch Energie
  • Neue UV-LEDs für die Druckindustrie können spezifisch an die Maschinenumgebung angepasst werden
  • Heraeus Noblelight zeigt Spezialstrahler für die Druckbranche auf der Messe IPEX in Birmingham vom 18.-25. Mai 2010 in Halle 6, Stand E515

Etiketten, Formulare, Karten oder Gewinnspiele werden durch Inkjet und Laser Drucker personalisiert. Diese Druckfarbe muss vollständig getrocknet oder gehärtet sein, bevor die Druckbögen gestapelt, geschnitten, gefaltet oder geklebt werden.


Carbon Infrarot-Strahler trocknen Inkjet Druckfarbe besonders energieeffizient. (Bild: Heraeus Noblelight GmbH)


Moderne UV-Lampen härten Druckfarbe zuverlässig und mit genügend hoher Leistung. (Bild: Heraeus Noblelight GmbH)

Zum Härten oder Trocknen werden je nach Farbe, UV- oder IR-Strahler eingesetzt. Dies ist zwangsläufig mit Energieaufwand verbunden. Gerade heute lohnt es sich, diese Prozesse genau zu überprüfen und nach Methoden zu suchen, die optimale Ergebnisse bei möglichst großer Energieeffizienz liefern.

Heraeus Noblelight präsentiert auf der Messe IPEX in Birmingham Speziallichtquellen, die genau auf die Eigenschaften der jeweiligen Lacksysteme abgestimmt werden.

Infrarot-Strahler verbessern die Energieeffizienz

Mit einem einfachen Austausch hat die Alito Color Group aus Leyton, London, viel gewonnen: Sie ersetzte ihren vorherigen Trockner, der mit kurzwelligen Strahlern im nahen Infrarotbereich (NIR) bestückt war, durch ein Heraeus Carbon Infrarot-System (CIR). Carbon Infrarot-Strahler (CIR) von Heraeus Noblelight trocknen Inkjet Druckfarben besonders effizient. Grund ist die mittelwellige Infrarot-Strahlung, die von den Carbon Strahlern mit hoher Leistung in die Farbe übertragen werden. Mittelwellige Infrarot-Strahlung wird vor allem von wasserbasierenden Farben gut absorbiert und so besonders schnell in Wärme umgesetzt. Carbon Strahler kombinieren die effektiven mittleren Wellenlängen mit hoher Leistung und schnellen Reaktionszeiten.

Nach erfolgreichen Tests wurden zwei Carbon Infrarot-Module (CIR) in die vorhandenen Rahmen eingebaut. Jedes 24 kW Modul passt zu einem speziellen 4¼inch Druckkopf. Damit ist es jetzt möglich, die volle Kapazität der Hochgeschwindigkeits-Druckköpfe zu nutzen.

Die Praxis zeigt, dass auch bei maximaler Druckgeschwindigkeit die hohe Druckqualität beibehalten werden kann. Zusätzlich benötigen die neuen Strahler weniger Energie als die vorherigen und haben eine erheblich längere Lebensdauer. Das hat die Energieeffizienz der Anlage stark verbessert.

UV Lampen mit intelligenter Energieversorgung

Das Emissionsspektrum der UV-Strahlung ist sehr wichtig für den Prozess der Druckfarbenhärtung. Denn es müssen ausreichend viele Photonen mit der Beschichtung reagieren, damit einerseits das gesamte Material durch härtet und zum anderen die Beschichtung eine Verbindung mit dem Untergrund eingeht. Jeder Lackhärtungsprozess ist also komplex und das jeweilige Lacksystem gibt seine individuellen Parameter für die Härtung vor.

Einige Anwendungen erfordern Weiterentwicklungen, wie beispielsweise Prozesse, die eine sehr hohe Beschichtungsdicke mit vielen Pigmenten oder Farbstoffen erfordern. Die Chemie dieser Beschichtungssysteme benötigt längere Wellenlängen, um mit dem UV-Licht ausreichend zu reagieren.

Auch andere Spezialanwendungen brauchen Licht mit Wellenlängen, die sich vom Standard-Quecksilberspektrum unterscheiden. Dem begegnet man mit Metallhalogenid-Zusätzen in den Lampen. Wenn die Lampe in Betrieb ist, verdampfen die Metallhalogenide. Dadurch werden zusätzlich deren Spektren abgegeben, was die Härtungsprozesse entscheidend verbessern kann.

Die Mehrheit der Anwendungen nutzt heute eine konventionelle Mitteldruck Quecksilberlampe, die bei etwa 120 W/cm inzwischen die Industrienorm darstellt. Es war eine Herausforderung, eine zuverlässige Lampe mit langer Lebensdauer und einer hohen Leistung während der gesamten Lebensdauer herzustellen. Diese beiden Faktoren wurden soweit verbessert, dass heute eine Lampe in einer gut konstruierten Anlage bis zu 3000 Stunden arbeitet, bei gleichbleibend guter Prozessgeschwindigkeit.

Mit dazu beigetragen hat eine enge Zusammenarbeit mit OEM Partnern. So konnten nach Kundenanforderung mit Hilfe intelligenter Energieversorgung und weiter entwickelten Kühlsystemen diese Fortschritte bei der Lampenherstellung umgesetzt werden.

Die kontrollierte Kühlung der Lampen hat höhere Betriebsleistungen ermöglicht. Die Leistung wird so gewählt, dass die Härtung einsetzt, ansonsten kann die Lampe im Standby bei sehr viel niedrigerer Leistung als früher gehalten werden. Das spart deutlich Energie. Manche Prozesse erfordern Spezialentwicklungen, typischerweise kleine Lampen (50 mm Bogenlänge) und Miniaturlampen (15 mm Bogenlänge). Diese setzt man für den Digitaldruck ein, bei dem die Lampe zusammen mit dem Druckkopf über die Oberfläche der Drucke fährt.

UV-LEDs – klein, flexibel, energiesparend

Gerade beim Digitaldruck, wenn die UV-Härtungslampe zusammen mit dem Druckkopf über die Oberfläche der Druckmaterialien fährt, zählt jede Gewichts- und Größeneinsparung. UV-LEDs sind hier die Innovation für die Zukunft. Die extrem kleine Bauart ermöglicht eine hohe Flexibilität in der Formgebung.

Kundenspezifisch können UV-LEDs von Heraeus der Maschinenumgebung angepasst werden. Wie aus einer Art Baukastensystem werden die einzelnen Komponenten den Anforderungen entsprechend zusammengestellt. Damit können spezielle Lösungen realisiert werden. Zum System gehören sämtliche Peripherie-Komponenten, wie Kühlung, Steuerung und Stromversorgung.

Wichtig für die Lebensdauer der UV-LEDs ist, dass alle zum System gehörenden Komponenten optimal aufeinander abgestimmt sind. Das Thermomanagement spielt dabei die entscheidende Rolle.

Die LED-Speziallichtquellen helfen Energie zu sparen. Durch einfaches Aus- und Einschalten wird nur dann Energie verbraucht, wenn sie benötigt wird. Die Performance der LEDs wird dadurch nicht beeinträchtig. Die LED-Technologie steht für „solide state lighting“ also eine „robuste“, solide vor allem belastbare Technologie.

Der neue Geschäftsbereich „Optoelektronik“ der Heraeus Noblelight GbmH profitiert bei der Herstellung von UV-LED Modulen und Systemen von den Kernkompetenzen des Heraeus Konzerns. In einer vollständigen Entwicklungs- und Fertigungslinie werden LED Chips in der so genannten „Chip-on-Board“-Technologie verarbeitet und im unternehmenseigenen, akkreditieren Messlabor vermessen und getestet. Somit können kundenspezifische System-Lösungen entsprechend spezieller Anforderungen zusammengestellt und angeboten werden.

Heraeus Noblelight bietet die gesamte Palette an Speziallichtquellen für die Druckfarbenhärtung, von UV bis IR, führt Versuche mit den Materialien durch und berät bei der Auswahl der optimalen Strahler für den jeweiligen Prozess.

Heraeus hat mehr als 40 Jahre Erfahrung mit Spezial-Strahlern, sowohl für den Endkunden als auch für große OEMs, und führt in hauseigenen Anwendungszentren praxisnahe Tests mit Kundenmaterialien durch, um die optimale kundenspezifische Prozesslösung zu finden.

Heraeus Noblelight GmbH mit Sitz in Hanau, mit Tochtergesellschaften in den USA, Großbritannien, Frankreich, China, Australien und Puerto Rico, gehört weltweit zu den Markt- und Technologieführern bei der Herstellung von Speziallichtquellen. Heraeus Noblelight wies 2008 einen Jahresumsatz von 92,5 Millionen € auf und beschäftigte weltweit 735 Mitarbeiter. Das Unternehmen entwickelt, fertigt und vertreibt Infrarot- und Ultraviolett-Strahler für Anwendungen in industrieller Produktion, Umweltschutz, Medizin und Kosmetik, Forschung und analytischen Messverfahren.

Der Edelmetall- und Technologiekonzern Heraeus mit Sitz in Hanau ist ein weltweit tätiges Familienunternehmen mit über 155-jähriger Tradition. Unsere Geschäftsfelder umfassen die Bereiche Edelmetalle, Sensoren, Dentalprodukte und Biomaterialien sowie Quarzglas und Speziallichtquellen. Mit einem Produktumsatz von rund 3 Mrd. € und einem Edelmetallhandelsumsatz von 13 Mrd. € sowie weltweit knapp 13000 Mitarbeitern in über mehr als 110 Gesellschaften hat Heraeus eine führende Position auf seinen globalen Absatzmärkten.

Für weitere Informationen wenden Sie sich bitte an:

Hersteller :
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Redaktion:
Dr. Marie-Luise Bopp
Juliane Henze
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Weitere Informationen:
http://www.heraeus-noblelight.com

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?
30.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE