Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphene's strength lies in its defects

12.11.2010
The website of the Nobel Prize shows a cat resting in a graphene hammock. Although fictitious, the image captures the excitement around graphene, which, at one atom thick, is the among the thinnest and strongest materials ever produced.

A significant obstacle to realizing graphene's potential lies in creating a surface large enough to support a theoretical sleeping cat. For now, material scientists stitch individual graphene sheets together to create sheets that are large enough to investigate possible applications.

Just as sewing patches of fabric together may create weaknesses where individual patches meet, defects can weaken the "grain boundaries" where graphene sheets are stitched together — at least that is what engineers had thought.

Now, engineers at Brown University and the University of Texas–Austin have discovered that the grain boundaries do not compromise the material's strength. The grain boundaries are so strong, in fact, that the sheets are nearly as strong as pure graphene. The trick, they write in a paper published in Science, lies in the angles at which the individual sheets are stitched together.

"When you have more defects, you expect the strength to be compromised," said Vivek Shenoy, professor of engineering and the paper's corresponding author, "but here it is just the opposite."

The finding may propel development of larger graphene sheets for use in electronics, optics and other industries.

Graphene is a two-dimensional surface composed of strongly bonded carbon atoms in a nearly error-free order. The basic unit of this lattice pattern consists of six carbon atoms joined together chemically. When a graphene sheet is joined with another graphene sheet, some of those six-carbon hexagons become seven-carbon bonds — heptagons. The spots where heptagons occur are called "critical bonds."

The critical bonds, located along the grain boundaries, had been considered the weak links in the material. But when Shenoy and Rassin Grantab, a fifth-year graduate student, analyzed how much strength is lost at the grain boundaries, they learned something different.

"It turns out that these grain boundaries can, in some cases, be as strong as pure graphene," Shenoy said.

The engineers then set out to learn why. Using atomistic calculations, they discovered that tilting the angle at which the sheets meet — the grain boundaries — influenced the material's overall strength. The optimal orientation producing the strongest sheets, they report, is 28.7 degrees for sheets with an armchair pattern and 21.7 degrees for sheets with a zigzag layout. These are called large-angle grain boundaries.

Large-angle grain boundaries are stronger because the bonds in the heptagons are closer in length to the bonds naturally found in graphene. That means in large-angle grain boundaries, the bonds in the heptagons are less strained, which helps explain why the material is nearly as strong as pure graphene despite the defects, Shenoy said.

"It's the way the defects are arranged," Shenoy said. "The grain boundary can accommodate the heptagons better. They're more relaxed."

Rodney Ruoff from the University of Texas–Austin's Department of Mechanical Engineering is a contributing author on the paper. The National Science Foundation and the Semiconductor Research Corporation's Nanoelectronics Research Initiative funded the research.

Courtney Anderson | EurekAlert!
Further information:
http://www.brown.edu

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen