Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen für verbesserten Flammschutz von Kunststoffen

15.03.2013
Durch Zusatz von lediglich 0,5 bis zwei Prozent des Kohlenstoffmoleküls Graphen gelang es, den Flammschutz von Kunststoffen zu optimieren.

Damit erweise sich das nur aus einer oder wenigen Atomlagen bestehende Graphen als ein vielversprechender neuer Hilfsstoff für einen halogenfreien Flammschutz von Kunststoffen, berichtet Bernhard Schartel von der BAM Bundesanstalt für Materialforschung und -prüfung in Berlin.

Im Vergleich zu anderen, bereits kommerziell erhältlichen Kohlenstoffpartikeln, wie mehrwandigen Nanoröhrchen oder Ruß, konnten die Forscher die Vorteile von Graphen für den Flammschutz aufzeigen.

„Das Reizvolle von Graphen ist sein Multifunktionscharakter. Es gelingt mit geringen Mengen gleichzeitig den Flammschutz, die mechanischen Eigenschaften und die Leitfähigkeit zu verbessern“, sagt Projektleiter Schartel. Als spannend erachtet Schartel auch die Eigenschaft als Antitropfmittel. Graphen ist eng mit Graphit verwandt. Graphen besteht nur aus einer Lage von Kohlenstoffatomen und ist extra dünn. Obwohl die aus wenigen Graphenlagen bestehenden Werkstoffe seit mehr als 100 Jahren bekannt und als Bleistiftstrich auf Papier allgegenwärtig sind, wird erst seit wenigen Jahren an der Entwicklung von Anwendungen von Graphenen gearbeitet.

Auslöser dieser Aktivitäten war, dass an einzelnen Atomlagen des bienenwabenförmig strukturierten Kohlenstoffmoleküls herausragende Materialeigenschaften gemessen werden konnten. Graphen ist ein im Verhältnis zu seiner Dicke von nur einem dreimillionstel Millimeter ein extrem großflächiges, zweidimensionales Molekül mit Abmessungen von einem Millimeter. Es ist transparent, extrem elektrisch leitfähig, chemisch beständig und weist zudem eine hohe mechanische Beständigkeit auf. Darüber hinaus zeigt es eine hohe Undurchlässigkeit gegenüber Gasen und Flüssigkeiten – alles Eigenschaften, die es, so die Einschätzung der Wissenschaftler, zu einem Hoffnungsträger für die Entwicklung neuer Hochleistungswerkstoffe machen.

Um Graphene und die ebenso interessanten Multilayer-Graphene (welche aus wenigen Lagen von Graphen bestehen) für neue Anwendungen, beispielsweise für verstärkte oder flammgeschützte Kunststoffe verfügbar zu machen, ist die BAM auch bei der Entwicklung neuer Herstellungsverfahren aktiv. Diese haben das Ziel, die derzeit noch extrem hohen Herstellungskosten von Graphenen zu senken und neue Materialqualitäten bereitzustellen. Unter der Leitung des BAM-Wissenschaftlers Asmus Meyer-Plath werden dazu Hochtemperaturverfahren entwickelt, die Graphene durch eine explosionsartige Zerteilung der Graphenvorstufe Graphitoxid erzeugen. Ein neuartiges plasmabasisertes Zerteilungsverfahren erlaubt hingegen, direkt aus Graphit weniger als einen Zehntausendstel Millimeter (oder 0,0001 mm) kleine Graphitflocken herzustellen. „Diese sind zwar dicker als Multilayer-Graphen, könnten aber zum Beispiel als Schmiermittel sehr interessant sein“, sagt Meyer-Plath.

Die Aktivitäten der BAM werden im Rahmen des Institutsforschungsverbundes „FUNgraphen“ vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und von einem Industriebeirat begleitet. Zum Forscherteam „FUNgraphen“ gehören neben der BAM, das Fraunhofer-Institut für Werkstoffmechanik (IWM) in Freiburg unter Leitung von Andreas Kailer, der Lehrstuhl für Polymere Werkstoffe der Universität Bayreuth von Prof. Volker Altstädt und das Freiburger Materialforschungszentrum (FMF) der Albert-Ludwigs-Universität mit den Arbeitskreisen der Professoren Christian Friedrich, Michael Moseler und Rolf Mülhaupt.

Durch die Zusammenarbeit mit der Industrie ist es dem Verbund gelungen, weitere interessante Ergebnisse zu erarbeiten: In Bayreuth konnten zum Beispiel durch den Zusatz von Graphen die Zellgrößen von Polystyrol-Schäumen erheblich verkleinert werden. Im Ergebnis wird so eine neue Qualität der Wärmedämmwirkung von Schaumstoffen möglich, die beim Einsatz in der Gebäudeisolation zur Verminderung von Heizkosten beitrüge.

Der Arbeitsgruppe von Prof. Rolf Mülhaupt vom Freiburger FMF gelang es, durch die Einarbeitung von Graphenen in Kunststoffe und Gummi, diese Werkstoffe mechanisch zu verstärken und zugleich elektrisch leitfähig und gasdichter zu machen, als es bisher mit Kohlenstoffpartikeln möglich war. Auf diese Weise können sie „dazu beitragen, die Ressourcen- und Energieeffizienz von Kunststoffen erheblich zu steigern“, sagt der geschäftsführende Direktor des FMF Prof. Rolf Mülhaupt, der auch Koordinator sowie Sprecher des Verbundes FUNgraphen ist. Die neuen Materialien gelten auch als vielversprechend für einen Einsatz in Benzintanks und Kraftstoffleitungen, aber auch in Leichtlauf-Autoreifen. Den Freiburgern ist es zudem gelungen, die Graphen-Herstellung in größeren Mengen durchzuführen.

Weitere Infos:
https://portal.uni-freiburg.de/fungraphen
Kontakt für Flammschutzaspekte von Graphen:
Priv.-Doz. Dr. rer. nat. habil. Bernhard Schartel
Abteilung 7 Bauwerkssicherheit
E-Mail: Bernhard.Schartel@bam.de
Kontakt für die Graphenherstellung mit Plasmaverfahren:
Dr. rer. nat. Asmus Meyer-Plath
Abteilung 6 Materialschutz und Oberflächentechnik
E-Mail: Asmus.Meyer-Plath@bam.de

Dr. Ulrike Rockland | idw
Weitere Informationen:
http://www.bam.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie