Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen statt Silizium: Neue Technologie im Fokus der Materialphysiker

09.07.2013
Das "Wunder"-Material Graphen verheißt einen vielfältigen und weitreichenden Einsatz in der Elektronik der Zukunft, das die traditionelle Silizium-Technologie ergänzen oder sogar ersetzen könnte.

Physikern an der Universität Wien ist es nun gelungen, eine neuartige Struktur aus hochwertigem Metall-Silicid zu erzeugen, die von einer schützenden Graphen-Schicht bedeckt ist. Ihre Methode könnte wegweisend für die Materialwissenschaften werden.


Die Bilder zeigen die Messaufnahmen, die während des Wachstums von Nickel-Silicid unter der Graphen-Schicht mithilfe der Spektroskopiemethode ARPES entstanden sind. Anhand des letzten Bilds (d) erkennen die Wissenschafter, dass das Graphen nur schwach mit den Metall-Siliciden wechselwirkt und daher seine einzigartigen Eigenschaften behält (lineares Dirac-artiges Spektrum von Graphen-Elektronen). (Copyright: Vilkov et al., Sci. Rep. 2013, DOI: 10.1038/srep02168)

Die Forscher der Gruppe "Elektronische Materialeigenschaften" an der Fakultät für Physik und ihre internationalen KollegInnen veröffentlichten ihre Ergebnisse im neuen Open Access Journal des renommierten Verlagshauses Nature: Scientific Reports.

Die einzigartigen Eigenschaften von Graphen wie z.B. seine unglaubliche Festigkeit und sein zugleich äußerst geringes Gewicht haben große Erwartungen in der modernen Materialwissenschaft geweckt. Graphen – ein zweidimensionaler Kristall aus Kohlenstoff-Atomen, der in einem bienenwabenförmigen Muster angeordnet ist – steht schon lange im Zentrum intensiver Forschung, die 2010 in einem Nobelpreis für Physik gipfelte.

Eine richtungsweisende Herausforderung ist die erfolgreiche Einbindung von Graphen in die etablierte Metall-Silicid-Technologie. Wissenschafterinnen von der Universität Wien und ihren Kollegen von Forschungsinstituten in Deutschland und Russland ist nun ein erster Schritt in diese Richtung gelungen: Sie erzeugten eine neuartige Struktur aus hochwertigem Metall-Silicid, die von einer schützenden Graphen-Schicht bedeckt ist. Diese zweidimensionalen Schichten sind so dünn wie ein einzelnes Atom.

In Einsteins Fußstapfen

Um die grundlegenden Eigenschaften der neuen Struktur zu entschlüsseln, greifen die Wissenschafterinnen zu leistungsstarken Messtechniken, die auf einer von Einsteins brillanten Entdeckungen beruhen – auf dem photoelektrischen Effekt. Wenn ein Lichtteilchen mit einem Material wechselwirkt, kann es all seine Energie auf ein Elektron innerhalb des Materials übertragen. Wenn die Energie des Lichts ausreichend groß ist, gewinnt das Elektron genug Energie, um aus dem Material auszubrechen. Wertvolle Informationen über die elektronischen Eigenschaften des Materials können die Wissenschafter dann mithilfe der sogenannten winkelaufgelösten Photoemissionsspektroskopie (ARPES) gewinnen, indem sie den Winkel messen, unter dem die Elektronen das Material verlassen. "Schichten so dünn wie einzelne Atome und daraus hergestellte Hybridmaterialien ermöglichen uns, eine Fülle von ungewöhnlichen elektronischen Phänomenen zu studieren. Die ARPES-Methode spielt dabei eine Schlüsselrolle", sagen Alexander Grüneis und Nikolay Verbitskiy, Mitglieder der Gruppe "Elektronische Materialeigenschaften" an der Universität Wien und Koautoren der Publikation.

Anwendung bei Halbleitern und Photovoltaik

In ihren Untersuchungen fanden die Wissenschafter heraus, dass die mit Graphen überzogenen Silicide zuverlässig gegen Oxidation geschützt sind und ein breites Spektrum von elektronischen Materialien und anwendungsorientierten Bauelementen abdecken können.

Eine besonders wichtige Entdeckung ist dabei, dass die Graphen-Schicht selbst kaum mit den darunterliegenden Siliciden wechselwirkt. Dadurch bleiben die einzigartigen Eigenschaften von Graphen überwiegend erhalten. Die Arbeit des Forscherteams wartet mit einem ausgeklügelten Verfahren auf, um Graphen mit der bestehenden Metall-Silicid-Technologie zu verknüpfen, die eine breite Anwendung in Halbleiterbauelementen, Spintronik, Photovoltaik und Thermoelektrik findet.

Die Forschung zu Graphen-bezogenen Materialien wird durch ein Marie-Curie-Fellowship der Europäischen Kommission und durch ein APART-Fellowship der Österreichischen Akademie der Wissenschaften finanziert.

Originalpublikation:
"Controlled assembly of graphene-capped nickel, cobalt and iron silicides":
O. Vilkov, A. Fedorov, D. Usachov, L. V. Yashina, A. Generalov, K. Borygina, N. I. Verbitskiy, A. Grüneis und D. V. Vyalikh
Scientific Reports, 9. Juli 2013,
DOI: 10.1038/srep02168
Wissenschaftlicher Kontakt:
Dr. Alexander Grüneis
Elektronische Materialeigenschaften
Fakultät für Physik – Universität Wien
Boltzmanngasse 5, 1090 Wien
M: +43-664-602 77-513 72
alexander.grueneis@univie.ac.at
http://homepage.univie.ac.at/alexander.grueneis/highlights.html
Rückfragehinweis:
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften