Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen schlägt Wellen

19.12.2013
Stress tritt häufig dann auf, wenn man unter Druck gerät, sei es von außen oder innen. Das gilt nicht nur für uns Menschen, sondern auch für Materialien und Werkstoffe.

Ein Material, das unter „Stress“ steht, erfährt mechanische Spannungen: Diese können von außen auf das Material einwirken oder aber im Inneren vorliegen, zum Beispiel an Defekten im Material oder aber, wenn sich ein Teil des Materials ausdehnen möchte, von einem anderen jedoch daran gehindert wird.


Um innere mechanische Spannungen an Kristallbaufehlern, sog. Versetzungen, abzubauen, bildet zweilagiges Graphen Wellen aus. Bild: FAU

Wie sieht es aber mit inneren Spannungen bei einem Material aus, das nur aus zwei Atomlagen besteht? Mit dieser Frage haben sich Wissenschaftler der FAU Erlangen-Nürnberg beschäftigt und das Ergebnis in "Nature"¹ veröffentlicht.

In der Online-Ausgabe der renommierten Wissenschaftszeitschrift Nature berichten sie, wie zweilagiger Kohlenstoff – auch Bilagen-Graphen genannt – in erstaunlicher Weise innere Spannungen abbaut, die an Defekten auftreten. Die Ergebnisse liefern nicht nur grundlegende Einblicke in das Wechselspiel von Defekten und mechanischen Spannungen in Nanomaterialien, sondern könnten auch die Tür zu neuen Wegen öffnen, um die elektronischen Eigenschaften von Bilagen-Graphen und anderen ultradünnen Schichtkristallen gezielt zu verändern.

Das interdisziplinäre Team von Wissenschaftlern aus den Werkstoffwissenschaften, der Physik und der Computer-Chemie haben hierzu detaillierte elektronenmikroskopische Analysen an freistehenden Membranen aus Bilagen-Graphen durchgeführt und diese mit aufwändigen Computersimulationen verglichen.

Eingespannte Graphen-Membran für Untersuchungen im Elektronenmikroskop

Zunächst stellten die Wissenschaftler hochwertiges Bilagen-Graphen bei Temperaturen über 1750 °C auf atomar glatten Oberflächen von Siliziumkarbid-Einkristallen her. Mit einer ausgeklügelten Methode, die in der Arbeitsgruppe von Prof. Heiko Weber, Physiker an der FAU und Koautor der Veröffentlichung, entwickelt wurde, gelang es dann, das Siliziumkarbid an einzelnen Stellen selektiv zu entfernen, ohne das Graphen zu zerstören.

„Die resultierenden Membranen eignen sich ideal für Untersuchungen im Transmissionselektronenmikroskop, da sie in einen festen Rahmen aus Siliziumkarbid eingespannt sind, ähnlich wie eine Sprungmatte im Trampolin“, erläutern Dr. Benjamin Butz und Prof. Erdmann Spiecker von der Arbeitsgruppe Elektronenmikroskopie, in der die mikroskopischen Analysen durchgeführt wurden.

Bei ihren Untersuchungen nutzten die Wissenschaftler ein hochmodernes aberrationskorrigiertes Transmissionselektronenmikroskop, mit dem sich das Graphen bei reduzierter Elektronenenergie ausgiebig studieren lässt, ohne beschädigt zu werden. Dabei machten die Erlanger Forscher eine erstaunliche Beobachtung: Anstelle des perfekten Bilagen-Graphens, bei dem die Atome auf streng periodischen Gitterplätzen liegen und die beiden Atomlagen eine definierte Stapelung besitzen, zeigten sich in regelmäßigen Abständen linienartige Kristallbaufehler, sogenannte „Versetzungen“. „Solche Defekte treten auf, wenn sich während der Herstellung eine Atomlage des Bilagen-Graphens relativ zur anderen ausdehnt oder zusammenzieht“, erklärt Prof. Spiecker. „Geschieht das, passen die beiden Lagen nicht mehr exakt aufeinander, da die eine ja mehr Atome unterbringen muss als die andere.“

Da das Bilagen-Graphen jedoch ganz bestimmte Stapelanordnungen energetisch bevorzugt, versucht es, auf möglichst großen Flächen in diese „einzurasten“. Als Folge entstehen abwechselnd Streifen, in denen das Bilagen-Graphen günstig gestapelt und weitgehend spannungsfrei ist, und solche, in denen die Stapelanordnung gestört ist und die beiden Atomlagen stark gegeneinander verspannt sind. Letztere entsprechen gerade den Versetzungen. Die Konzentration innerer Spannungen an Versetzungen ist eines der Charakteristika dieser Kristallbaufehler, die in der Materialforschung eine extrem wichtige Rolle spielen.

Entspannung durch Wellenbildung

Lassen sich aber solch starke innere Spannungen, wie sie an den Versetzungen auftreten, in einer nur zwei Atomlagen dünnen Membran aufrechterhalten? – Die Antwort heißt „nein“, wie die Erlanger Wissenschaftler überzeugend belegen konnten. „Weil die Membran so dünn ist, kann sie sich fast beliebig verbiegen, um die inneren Spannungen abzubauen“, erläutert Dr. Butz. Dass dies tatsächlich passiert, belegen Computersimulationen, die in der Arbeitsgruppe von Prof. Bernd Meyer am Computer-Chemie-Centrum durchgeführt und direkt mit den Experimenten verglichen wurden. Im Computer wird die experimentelle Situation um solche Versetzungen nachgestellt. Hierbei wird jedes einzelne Kohlenstoffatom mit seinen Bindungen innerhalb seiner Atomlage, aber auch die wesentlich schwächere Wechselwirkung zwischen den beiden Lagen berücksichtigt. Wird die Gesamtenergie des Systems minimiert — dies entspricht dem Zustand, den ein Material gerne einnimmt, sofern keine äußeren Kräfte wirken —, schlägt die Membran Wellen, an jeder Versetzung eine. „Das erstaunliche ist, dass durch die Bildung von Wellen die Spannungskonzentration an den Versetzungen nahezu komplett abgebaut wird“, sagt Prof. Meyer.

Grundlegende Erkenntnisse zu Kristallversetzungen – Einfluss auf elektronische Eigenschaften

Die Ergebnisse der Erlanger Materialforscher haben weitreichende Folgen für die Forschung an Graphen aber auch an verwandten Materialien, z.B. Bornitrid oder Dichalkogeniden. „Derzeit versucht man, innere Spannungen in Bilagen-Graphen einzubringen, um die elektronischen Eigenschaften des Materials gezielt zu verändern“, erläutert Dr. Butz. „Die Versetzungen und die Art und Weise, wie Bilagen-Graphen mit den auftretenden inneren Spannungen umgeht, könnten die Tür zu neuen Konzepten öffnen.“ Darüber hinaus liefern die Erlanger Resultate grundlegende Erkenntnisse zum Verhalten von Versetzungen in Nanomaterialien, einem hochaktuellen Thema in den Material- und Nanowissenschaften. „Bilagen-Graphen ist das dünnste Material überhaupt, in dem solche ausgedehnten Versetzungen eingeschlossen werden können“, weiß Prof. Spiecker. „Es ist somit ein ideales Modellsystem, um die Wechselwirkung von Versetzungen mit freien Oberflächen zu studieren.“

Erfolgreiche Forschung durch interdisziplinäre Zusammenarbeit

Die weitreichenden Forschungsergebnisse konnten nur durch die enge Kooperation der Erlanger Wissenschaftler erzielt werden: Die Herstellung der Membranen in der Physik, die mikroskopischen Analysen und deren materialwissenschaftliche Deutung in den Werkstoffwissenschaften sowie die atomistische Modellierung in der Computer-Chemie. Solche interdisziplinären Zusammenarbeiten haben an der Universität Erlangen-Nürnberg bereits Tradition und werden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen von Verbundprojekten stark gefördert, wie hier durch den Sonderforschungsbereich SFB 953 „Synthetische Kohlenstoffallotrope“ und den Exzellenzcluster EXC 315 „Engineering of Advanced Materials“.

¹Dislocations in Bilayer Graphene, B. Butz, C. Dolle, F. Niekiel, K. Weber, D. Waldmann, H. B. Weber, B. Meyer and E. Spiecker, Nature (2013), DOI: 10.1038/nature12780.

Weitere Informationen für die Presse:
Prof. Erdmann Spiecker
Tel. 09131/85-28603
Erdmann.Spiecker@uni-erlangen.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten