Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen Nanoelektronik: Auf dem Weg zur Überschreitung der Terahertz-Grenze

16.07.2015

Einfache Thermodynamik bestimmt das Verhalten von ultraschnellen Graphen-Transistoren und Photodetektoren.

Ein Team von Forschern am Max-Planck-Institut für Polymerforschung (MPI-P) hat herausgefunden, dass die thermischen Eigenschaften von Leitungselektronen in Graphen denen von Gasen ähnlich sind.


Terahertzfeld und Graphen beeinflussen sich gegenseitig, was zu einer effizienten Erwärmung der Elektronen führt. Die Leitfähigkeit des Graphens wird dabei stark verändert.

© Zoltan Mics / MPI-P

Dieser einfache thermodynamische Ansatz ist auf der Zeitskala von Pikosekunden gültig, wobei eine Pikosekunde ein Billionstel einer Sekunde ist. Diese Erkenntnis über die elektrische Leitfähigkeit in Graphen eröffnet einen Weg zu verbesserten Leistungen von ultraschnellen Transistoren.

Die Wissenschaftler entdeckten, dass in Graphen die Energie von ultraschnellen elektrischen Strömen sehr effizient in Elektronenwärme umgewandelt wird. Die Elektronen in Graphen verhalten sich dabei wie ein heißes Gas. „Die Wärme verteilt sich gleichmäßig über alle Elektronen.

Der Anstieg der Elektronentemperatur durch die fließenden Ströme hat wiederum starke Auswirkungen auf die elektrische Leitfähigkeit des Graphens“, erklärt Professor Dr. Mischa Bonn, Direktor am MPI-P. Die Ergebnisse finden sich in der Studie “Thermodynamic picture of ultrafast charge transport in graphene”, die kürzlich in Nature Communications veröffentlicht wurde.

Graphen - eine einzelne Schicht aus Kohlenstoffatomen - ist für seine sehr gute elektrische Leitfähigkeit bekannt. Daher findet Graphen zahlreiche Anwendungen in moderner Nanoelektronik. Diese Vielfalt reicht von hocheffizienten Detektoren für optische und drahtlose Kommunikation bis hin zu extrem schnell arbeitenden Transistoren.

Die ständig wachsende Nachfrage nach Übertragungsbandbreite erfordert eine stetige Beschleunigung der Vorgänge in elektronischen Geräten bis hin zu Antwortzeiten von Pikosekunden.

„Unsere Ergebnisse sorgen nicht nur für ein besseres Verständnis der auf Graphen basierenden Nanoelektronik, sondern auch für eine verbesserte Leistung von Bauelementen, wie beispielsweise Photodetektoren oder Hochgeschwindigkeits-Transistoren“, sagt Professor Dr. Dmitry Turchinovich, Projektleiter am MPI-P. Die Wissenschaftler erhoffen sich davon, neue Herausforderungen zu bewältigen.

Dazu gehört insbesondere die Überschreitung der Terahertz-Grenze - eine Billion Schwingungen pro Sekunde - in Graphen-Transistoren.

Weitere Informationen:

MPI-P Webseite: http://www.mpip-mainz.mpg.de/
Prof. Dr. Dmitry Turchinovich: www.mpip-mainz.mpg.de/thz

Natacha Bouvier | Max-Planck-Institut für Polymerforschung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie