Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen konserviert - Fortschritt für die Spintronik

10.02.2012
HZB-Wissenschaftler entwickeln Verfahren, um elektronische Oberflächenzustände mit Graphen dauerhaft zu machen. Wissenschaftlern des Helmholtz-Zentrums Berlin (HZB) ist es jetzt gemeinsam mit Kollegen aus Dresden und Jülich gelungen, die elektronischen Oberflächenzustände eines Metalls dauerhaft zu konservieren.
Dazu versiegelten sie die Oberfläche des Metalls Iridium mit einer Kohlenstoffschicht, die die Stärke von nur einem Atom hat. Diese als Graphen bezeichnete Modifikation des Kohlenstoffs schirmt äußere Einflüsse wirksam ab. Die Fähigkeit, die elektronischen Oberflächenzustände haltbar zu machen, ist für die Spintronik von größtem Interesse. Ihre Erkenntnisse haben die HZB-Forscher heute im Fachjournal „Physical Review Letters“ veröffentlicht (DOI: 10.1103/PhysRevLett.108.066804).

Die Spintronik nutzt das magnetische Moment – den Spin – von Elektronen, um Informationen zu verarbeiten. An Oberflächen lassen sich Elektronen mit unterschiedlichem Spin besonders gut voneinander unterscheiden, denn dort liegt eine sogenannte Symmetriebrechung vor. Allerdings sind die Elektronen an der Oberfläche einer Substanz sehr aktiv und gehen schnell chemische Verbindungen beispielsweise mit Sauerstoff ein. Ein bestimmter Spin-Zustand ließ sich deshalb bisher nur unter extremen Bedingungen, etwa im Ultrahochvakuum, erhalten.

Die Forscher am HZB haben für ihre erfolgreichen Versuche, die elektronische Oberflächenstruktur zu konservieren, mit dem Metall Iridium experimentiert. „Wir haben das Metall katalytisch mit dem Gas Propylen, einen Kohlenwasserstoff, behandelt“, sagt Projektleiter Dr. Andrei Varykhalov von der HZB-Abteilung Magnetisierungsdynamik. An der Oberfläche komme es dann zu zwei Konkurrenzreaktionen, so Varykhalov weiter, bei der die Graphenisierung jedoch die stärkere sei: „So bildet sich auf dem Iridium eine einschichtige Lage von Kohlenstoffatomen.“ Diese Graphenschicht sowie die Spinzustände der obersten Metallschicht haben die HZB-Forscher dann mit ausgefeilten Analysemethoden am Elektronenspeicherring BESSY II untersucht. Dabei kam ein Gerät aus der Teilchenphysik, ein sogenannter Spindetektor, zum Einsatz.

„Wir konnten dabei zunächst nachweisen, dass sich die Spinzustände des Iridiums unter der Graphenschicht nicht verändern. Das haben auch Modellrechnungen am Forschungszentrum Jülich bestätigt“, erklärt Varykhalov: „In einem zweiten Schritt haben wir dann festgestellt, dass sie auch an der Luft exakt erhalten bleiben“ Dies sei ein wichtiger Fortschritt für die Spintronik. Varykhalov: „Bei unserem graphenbeschichteten Iridium handelt es sich noch um ein Forschungsmodell. Wenn es uns aber gelingt, die Spin-Zustände auf einem Isolator mit Hilfe von Graphen zu konservieren, rücken konkrete Anwendungen für die Spintronik in greifbare Nähe.“
Weitere Informationen:
Dr. Andrei Varykhalov
Magnetisierungsdynamik
Tel.: +49 (0)30-8062-14888
andrei.varykhalov@helmholtz-berlin.de

Pressestelle
Hannes Schlender
Tel.: +49 (0)30-8062-42414
Fax: +49 (0)30-8062-42998
hannes.schlender@helmholtz-berlin.de

Dr. Ina Helms | Helmholtz Berlin
Weitere Informationen:
http://www.helmholtz-berlin.de
http://prl.aps.org/abstract/PRL/v108/i6/e066804

Weitere Berichte zu: Elektron Graphen-Speicher Graphenschicht HZB Spin Spintronik Spinzustände iridium

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen

23.02.2018 | Biowissenschaften Chemie

Internationale Forschungskooperation will Altersbedingte Makuladegeneration überwinden

23.02.2018 | Biowissenschaften Chemie

Workshop zu flexiblen Solarzellen und LEDs auf der Energiemesse „New Energy“

23.02.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics