Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen gleitet fast reibungslos über Gold

04.03.2016

cfaed-Wissenschaftler Xinliang Feng ist Koautor einer Publikation im Wissenschaftsjournal Science

Graphen, eine besondere Form von Kohlenstoff, bietet vielfältige Potenziale für die Nutzung als Beschichtung von Maschinenteilen und im Bereich der elektronischen Schaltungen. Ein internationales Forscherteam unter Leitung von Physikern der Universität Basel, in das auch Wissenschaftler der TU Dresden (Dr. Andrea Benassi und Prof. Xinliang Feng) eingebunden sind, hat die Gleitfähigkeit dieses Materials im Nanometerbereich untersucht.


Ein Graphen-Nanoband wurde an der Spitze eines Rasterkraftmikroskops verankert und über eine Goldoberfläche gezogen. Die beobachtete Reibungskraft war äußerst gering.

Universität Basel, Fachbereich Physik

Wie die Forscher in der Fachzeitschrift Science berichten, trägt das Material in seiner Funktion als Beschichtung zu einer drastischen Verringerung des Energieverlustes innerhalb von Maschinen bei, da es fast keine Reibung hervorruft.

Zukünftig könnte Graphen als extrem dünne Beschichtung eingesetzt werden, wodurch der Energieverlust zwischen mechanischen Teilen auf nahezu Null gesenkt werden könnte. Dieser Effekt beruht auf der außergewöhnlich hohen Gleitfähigkeit – die Wissenschaftler sprechen von „Superschmierfähigkeit“, englisch „superlubricity“ –der Kohlenstoffmodifikation Graphen. Die Nutzung dieser Eigenschaft für mechanische und elektromechanische Anlagen würde nicht nur deren Energieeffizienz verbessern, sondern auch die Lebensdauer der Geräte erheblich verlängern.

Die Ursachen der extremen Gleitfähigkeit ergründen

Die internationale Physikergruppe untersuchte die überdurchschnittliche Gleitfähigkeit des Graphens mittels eines zweigleisigen Ansatzes – einer Kombination von Experimenten und Berechnungen. Hierfür verankerten sie Streifen aus einer einzelnen Lage von Kohlenstoffatomen – sogenannte Graphen-Nanobänder – an der scharfen Spitze eines Rasterkraftmikroskops und zogen sie über eine Goldoberfläche.

Durch computerbasierte Berechnungen wurden die Wechselwirkungen zwischen den Oberflächen während dieser Bewegung untersucht. Mit diesem Ansatz hofft das Forscherteam, die Ursachen der Supra-Gleitfähigkeit zu verstehen, denn bislang gab es nur wenig Forschung auf diesem Gebiet.

Von der Untersuchung der Graphen-Nanobänder versprechen sich die Forscher aber noch deutlich mehr, als nur das Gleitverhalten zu ergründen. Die Messung der mechanischen Eigenschaften des kohlenstoffbasierten Materials ist auch sinnvoll, weil es für eine ganze Reihe von Anwendungen im Bereich der Beschichtungen und mikromechanischen Schaltern exzellente Potenziale bietet.

In Zukunft könnten auch elektronische Schalter durch nano-mechanische Schalter ersetzt werden, welche weniger Energie zum Ein- und Ausschalten verbrauchen würden als herkömmliche Transistoren.
Die Experimente zeigten eine fast perfekte, reibungsfreie Bewegung. Es ist möglich, die Graphen-Nanobänder mit einer Länge zwischen 5 und 50 Nanometern mittels extrem geringer Kräfte (2 bis 200 Pikonewton; 1 Pikonetwon entspricht einem billionstel Newton, 10−12 N) zu bewegen. Es wurde eine hochgradige Übereinstimmung zwischen den experimentellen Beobachtungen und der Computersimulation festgestellt.

Eine Diskrepanz zwischen dem berechneten Modell und der Wirklichkeit tritt nur bei größeren Abständen von fünf oder mehr Nanometern zwischen Messspitze und Goldoberfläche auf. Dies erklärt sich vermutlich dadurch, dass die Ränder der Graphen-Nanobänder mit Wasserstoff gesättigt sind, was innerhalb der Simulationen nicht berücksichtigt wurde.

"Unsere Ergebnisse helfen uns, die Veränderung von Chemikalien auf der Nanoebene besser zu verstehen und den Weg zur Herstellung reibungsfreier Beschichtungen zu ebnen", schreiben die Forscher.

Mehr Informationen: "Superlubricity of graphene nanoribbons on gold surfaces" Science, DOI: 10.1126/science.aad3569

Informationen für Journalisten:
Prof. Xinliang Feng
Technische Universität Dresden
cfaed Chair of Molecular Functional Materials
01062 Dresden
Phone: +49 351 463-43251
Mobil: 0151 – 59082943
Email: xinliang.feng@tu-dresden.de

Weitere Informationen:

https://cfaed.tu-dresden.de/press-releases-201/feng-science-paper-superlubricity

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen
23.04.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics