Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen gleitet fast reibungslos über Gold

04.03.2016

cfaed-Wissenschaftler Xinliang Feng ist Koautor einer Publikation im Wissenschaftsjournal Science

Graphen, eine besondere Form von Kohlenstoff, bietet vielfältige Potenziale für die Nutzung als Beschichtung von Maschinenteilen und im Bereich der elektronischen Schaltungen. Ein internationales Forscherteam unter Leitung von Physikern der Universität Basel, in das auch Wissenschaftler der TU Dresden (Dr. Andrea Benassi und Prof. Xinliang Feng) eingebunden sind, hat die Gleitfähigkeit dieses Materials im Nanometerbereich untersucht.


Ein Graphen-Nanoband wurde an der Spitze eines Rasterkraftmikroskops verankert und über eine Goldoberfläche gezogen. Die beobachtete Reibungskraft war äußerst gering.

Universität Basel, Fachbereich Physik

Wie die Forscher in der Fachzeitschrift Science berichten, trägt das Material in seiner Funktion als Beschichtung zu einer drastischen Verringerung des Energieverlustes innerhalb von Maschinen bei, da es fast keine Reibung hervorruft.

Zukünftig könnte Graphen als extrem dünne Beschichtung eingesetzt werden, wodurch der Energieverlust zwischen mechanischen Teilen auf nahezu Null gesenkt werden könnte. Dieser Effekt beruht auf der außergewöhnlich hohen Gleitfähigkeit – die Wissenschaftler sprechen von „Superschmierfähigkeit“, englisch „superlubricity“ –der Kohlenstoffmodifikation Graphen. Die Nutzung dieser Eigenschaft für mechanische und elektromechanische Anlagen würde nicht nur deren Energieeffizienz verbessern, sondern auch die Lebensdauer der Geräte erheblich verlängern.

Die Ursachen der extremen Gleitfähigkeit ergründen

Die internationale Physikergruppe untersuchte die überdurchschnittliche Gleitfähigkeit des Graphens mittels eines zweigleisigen Ansatzes – einer Kombination von Experimenten und Berechnungen. Hierfür verankerten sie Streifen aus einer einzelnen Lage von Kohlenstoffatomen – sogenannte Graphen-Nanobänder – an der scharfen Spitze eines Rasterkraftmikroskops und zogen sie über eine Goldoberfläche.

Durch computerbasierte Berechnungen wurden die Wechselwirkungen zwischen den Oberflächen während dieser Bewegung untersucht. Mit diesem Ansatz hofft das Forscherteam, die Ursachen der Supra-Gleitfähigkeit zu verstehen, denn bislang gab es nur wenig Forschung auf diesem Gebiet.

Von der Untersuchung der Graphen-Nanobänder versprechen sich die Forscher aber noch deutlich mehr, als nur das Gleitverhalten zu ergründen. Die Messung der mechanischen Eigenschaften des kohlenstoffbasierten Materials ist auch sinnvoll, weil es für eine ganze Reihe von Anwendungen im Bereich der Beschichtungen und mikromechanischen Schaltern exzellente Potenziale bietet.

In Zukunft könnten auch elektronische Schalter durch nano-mechanische Schalter ersetzt werden, welche weniger Energie zum Ein- und Ausschalten verbrauchen würden als herkömmliche Transistoren.
Die Experimente zeigten eine fast perfekte, reibungsfreie Bewegung. Es ist möglich, die Graphen-Nanobänder mit einer Länge zwischen 5 und 50 Nanometern mittels extrem geringer Kräfte (2 bis 200 Pikonewton; 1 Pikonetwon entspricht einem billionstel Newton, 10−12 N) zu bewegen. Es wurde eine hochgradige Übereinstimmung zwischen den experimentellen Beobachtungen und der Computersimulation festgestellt.

Eine Diskrepanz zwischen dem berechneten Modell und der Wirklichkeit tritt nur bei größeren Abständen von fünf oder mehr Nanometern zwischen Messspitze und Goldoberfläche auf. Dies erklärt sich vermutlich dadurch, dass die Ränder der Graphen-Nanobänder mit Wasserstoff gesättigt sind, was innerhalb der Simulationen nicht berücksichtigt wurde.

"Unsere Ergebnisse helfen uns, die Veränderung von Chemikalien auf der Nanoebene besser zu verstehen und den Weg zur Herstellung reibungsfreier Beschichtungen zu ebnen", schreiben die Forscher.

Mehr Informationen: "Superlubricity of graphene nanoribbons on gold surfaces" Science, DOI: 10.1126/science.aad3569

Informationen für Journalisten:
Prof. Xinliang Feng
Technische Universität Dresden
cfaed Chair of Molecular Functional Materials
01062 Dresden
Phone: +49 351 463-43251
Mobil: 0151 – 59082943
Email: xinliang.feng@tu-dresden.de

Weitere Informationen:

https://cfaed.tu-dresden.de/press-releases-201/feng-science-paper-superlubricity

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie